DOI QR코드

DOI QR Code

Evaluation of Solder Printing Efficiency with the Variation of Stencil Aperture Size

스텐실 개구홀 크기 변화에 따른 솔더프린팅 인쇄효율 평가

  • 권상현 (한국생산기술연구원 용접접합기술센터) ;
  • 김정한 (한국생산기술연구원 용접접합기술센터) ;
  • 이창우 (한국생산기술연구원 용접접합기술센터) ;
  • 유세훈 (한국생산기술연구원 용접접합기술센터)
  • Received : 2011.12.13
  • Accepted : 2011.12.26
  • Published : 2011.12.30

Abstract

Main parameters of the screen printing were determined and the printing parameters were optimized for 0402, 0603, and 1005 chips in this study. The solder pastes used in this study were Sn-3.0Ag-0.5Cu and Sn-0.7Cu. The process parameters were stencil thickness, squeegee angle, printing speed, stencil separating speed and gap between stencil and PCB. The printing pressure was fixed at 2 $kgf/cm^2$. From ANOVA results, the stencil thickness and the squeegee angle were determined to be main parameters for the printing efficiency. The printing efficiency was optimized with varying two main parameters, the stencil thickness and the squeegee angle. The printing efficiency increased as the squeegee angle was lowered under 45o for all chips. For the 0402 and the 0603 chips, the printing efficiency increased as the stencil thickness decreased. On the other hand, for the 1005 chip, the printing efficiency increased as the stencil thickness increased.

표면실장형 수동소자인 0402, 0603, 1005 칩에 대한 인쇄 주요인자 결정 및 공정 최적화를 실험계획법을 통해 실시하였다. 실험에 사용된 솔더는 Sn-3.0Ag-0.5Cu와 Sn-0.7Cu이며, 공정변수로는 스텐실 두께, 스퀴지 각도, 인쇄 속도, 기판분리 속도, 스텐실과 기판간의 갭이며, 인쇄압력은 2 $kgf/cm^2$로 고정하였다. 분산분석을 통해 인쇄효율에 영향을 미치는 주요인자가 스텐실 두께와 스퀴지 각도임을 확인할 수 있었다. 주요인자인 스텐실 두께와 스퀴지 각도를 변화시켜 인쇄효율의 최적화 영역을 확인하였고, 0402, 0603, 1005 칩 모두 스퀴지 각도가 $45^{\circ}$ 이하일 경우 인쇄효율이 높았다. 스텐실 두께를 변화할 경우 칩 크기에 따라 인쇄효율이 다른 양상을 보였는데, 0402, 0603 칩에서는 스텐실 두께가 얇을수록 높은 인쇄효율을 보였으며, 1005 칩에서는 스텐실 두께가 두꺼울수록 높은 인쇄효율을 나타내었다.

Keywords

References

  1. R. S. Clouthier, "The Complete Solder Paste Printing Processes", Surf. Mount Technol., 13(1), 6 (1999).
  2. D. C. Montgomery, J. B. Keats, L. A. Perry, J. R. Thompson and W. S. Messina, "Using Statistically Designed Experiments for Process Development and Improvement: An Application in Electronics Manufacturing", Robotics and Computer Integrated Manufacturing, 16, 55 (2000). https://doi.org/10.1016/S0736-5845(99)00057-5
  3. D. He, N. N. Ekere, B. Salam, D. Rajkumar and G. Jackson, "Monte Carlo Study of Solder Paste Microstructure and Ultrafine- pitch Stencil Printing", J. Mater. Sci., 14, 501 (2003).
  4. A. Lofti, and M. Howarth, "Industrial Application of Fuzzy Systems: Adaptive Fuzzy Control of Solder Paste Stencil Printing", Information Sciences, 107, 273 (1998). https://doi.org/10.1016/S0020-0255(97)10053-6
  5. T. Wilson and D. Bloomfield, "An Optimistic Outlook for Ultra Fine Pitch(part I)", Electron. Prod., Feb., 39 (1995).
  6. J. A. Owczarek, and F. L. Howland, "A Study of the Off-contact Screen Printing Process(part I): Model of the Printing Process and Some Results Derived from Experiment", IEEE Trans. Compo., Hybrids, Manuf. Technol., 13(2), 358 (1990). https://doi.org/10.1109/33.56169
  7. J. Pan, G. L. Tonkay, R. H. Storer, R. M. Sallade and D. J. Leandri, "Critical Variables of Solder Paste Stencil Printing for Micro-BGA and Fine-Pitch QFP", IEEE Trans. Electon. Packag. Manufact., 27(2), 125 (2004). https://doi.org/10.1109/TEPM.2004.837965
  8. T. A. Nguty and N. N. Ekere, "The Rheological Properties of Solder and Solar Pastes and the Effect on Stencil Printing", Rheologica Acta, 39, 607 (2000). https://doi.org/10.1007/s003970000117
  9. W. -S. Seo, B. -W. Min, J. -H. Kim, N. -K. Lee and J. -B. Kim, "An Analysis of Screen Printing using Solder Paste", J. Microelectron. Packag. Soc. 17(1), 47 (2010).
  10. S.-M. Bae, S. -H. Son, S. -H. Kwon, H. -S. Lee, Y.-M. Heo, M. -J. Kang and S. Yoo, "Development of Knowledge Sharing Platform for Digitization of Surface Mount Technology", J. Microelectron. Packag. Soc. 18(1), 1 (2011)
  11. C. Kwon, "Application of Central Composite Design in Simulation Experiment", Lecture Notes in Computer Science, 3398, 40 (2005).
  12. S. H. Mannan, N. N. Ekere, N. I. Ismail and E. K. Lo, "Squeegee Deformation Study in the Stencil Printing of Solder Pastes", IEEE Trans. Compo., Package., Manuf. Technol., 17, 70 (1994).
  13. M. Whitmore and C. Ashmore, "New Developments in Broadband Printing Techniques", Proc. SMTA International Conference, Orlando, Surface Mount Technology Association (SMTA) (2010).
  14. O. Krammer, L. M. Molnar, L. Jakab and A. Szabo, "Modelling the Effect of Uneven PWB Surface on Stencil Bending during Stencil Printing Process", Microelectron. Reliab., 52(1), 235 (2012). https://doi.org/10.1016/j.microrel.2011.08.012