DOI QR코드

DOI QR Code

Degradation Characteristic of Endocrine Disruptors (DEP, NP) Using Combined Advanced Oxidation Processes (AOPs)

혼합된 고급산화공정(AOPs)을 이용한 내분비계장애물질(DEP, NP)의 분해특성 연구

  • Na, Seung-Min (School of Civil Environmental and Architecture, Korea University) ;
  • Ahn, Yun-Gyong (Korea Basic Science Institute) ;
  • Cui, Ming-Can (School of Civil Environmental and Architecture, Korea University) ;
  • Cho, Sang-Hyun (School of Civil Environmental and Architecture, Korea University) ;
  • Khim, Jee-Hyeong (School of Civil Environmental and Architecture, Korea University)
  • 나승민 (고려대학교 건축사회환경공학과) ;
  • 안윤경 (한국기초과학지원연구원, 서울센터 분석연구부) ;
  • 최명찬 (고려대학교 건축사회환경공학과) ;
  • 조상현 (고려대학교 건축사회환경공학과) ;
  • 김지형 (고려대학교 건축사회환경공학과)
  • Received : 2010.11.11
  • Accepted : 2011.01.05
  • Published : 2011.02.28

Abstract

Diethyl phthalate (DEP) and nonylphenol (NP) are widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including $TiO_2$, as advanced oxidation processes (AOPs) were applied to a DEP and NP contaminated solution. When only the application of US, the optimum frequency for significant DEP degradation and a high rate of hydrogen peroxide ($H_2O_2$) formation was 283 kHz. We know that the main mechanism of DEP degradation is radical reaction and, NP can be affected by both of radical reaction and pyrolysis through only US (sonolysis) process and combined US+UVC (sonophotolysis) process. At combined AOPs (sonophotolysis/sonophotocatalysis) such as US+UVC and US+UVC+$TiO_2$, significant degradation of DEP and NP were observed. Enhancement effect of sonophotolysis and sonophotocatalysis system of DEP and NP were 1.68/1.38 and 0.99/1.17, respectively. From these results, combined sonophotocatalytic process could be more efficient system to obtain a significant DEP and NP degradation.

Keywords

References

  1. 권태옥, 박보배, 문일식, 2007, UV, H2O2, 오존을 이용한 고급산화공정에서의 테레프탈산 제조공정 폐수처리 :유기물 및 색도제거 연구, 환경화학공학회지, 45(6), 648-655.
  2. 손현석, 조경덕, 2008, 광반응, 펜톤 그리고 Fe2+와 UV의 조합반응을 이용한 Triclosan 의 분해: 공정비교 연구, 대한환경공학회지, 30(5), 517-523.
  3. 정연정, 오병수, 강준원, 2006, 오존, UV, 오존/UV 혼합공정을 이용한 Diethyl phthalate (DEP)의 제거특성 연구, 대한환경공학회지, 28(2), 137-143.
  4. 최근주, 김상구, 손희종, 류동춘, 류재익, 손인식, 2002, 정수공정별 내분비계 장애물질 제어특성 평가, 한국물환경학회지, 18 (1), 9-17.
  5. Ahel, M., Giger, W., Koch, M., 1994, Behavior of alkylphenol polyethoxylate in the aquatic environment I. Occurrence and transformation in sewage treatment, Wat. Res., 28, 1131-1142. https://doi.org/10.1016/0043-1354(94)90200-3
  6. Bassam, S. T., Mohammed, S. S., 2004, Removal of dimethyl phthalate from water by UV-H2O2 process, J. Env. Eng. Sci., 3, 289-294. https://doi.org/10.1139/s04-009
  7. Bajt, O., Mailhot, G., Bolte, M., 2001, Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe (III) in aqueous solution. App. Cat. B. Envi., 33, 239-248. https://doi.org/10.1016/S0926-3373(01)00179-5
  8. Beckeet, M. A., Hua, I., 2001, Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry, J. Phys. Chem., 105, 3796-3802. https://doi.org/10.1021/jp003226x
  9. Chand, R., Ince, N. H., Gogate, P. R., Bremner, D. H., 2009, Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals, Sep. & Pur. Tech., 67, 103-109. https://doi.org/10.1016/j.seppur.2009.03.035
  10. Chen, Y. C., Vorontsov, A. V., Smirniotis, P. G., 2003, Enhanced photocatalytic dsegradation of dimethylmethylphosphonate in the presence of low frequency ultrasound, PPS. 2, 694-698.
  11. Chen, W. L., Sung, H. H., 2005, The toxic effect of phthalate esters on immune responses of giant freshwater prawn (Macrobrachium Resenbergii) via oral treatment, Aqu. Toxi., 74, 160-171. https://doi.org/10.1016/j.aquatox.2005.05.008
  12. Drijvers, D., Baets, R. D., Visscher, A. D., Langenhove, H. V., 1996, Sonolysis of trichloroethylene in aqueous solution: volatile organic intermediates, Ult. Sono., 3, s83-s90. https://doi.org/10.1016/1350-1477(96)00012-3
  13. Hua, I., Hoffmann, M. R., 1997, Optimization of ultrasonic irradiation as an advanced oxidation technology, ES&T., 31, 2237-2243. https://doi.org/10.1021/es960717f
  14. Ince, N. H., Gűltekin, I., Tezcanli-Gűyer, G., 2009, Sonochemical destruction of nonylphenol : effects of pH and hydroxyl radical scavengers, J. of Haz. Mat., 172, 739-743. https://doi.org/10.1016/j.jhazmat.2009.07.058
  15. Inoue, M., Okada, F., Sakurai, A., Sakakibara, M., 2006, A new development of dyestuffs degradation system using ultrasound, Ult. Sono., 13, 313-320. https://doi.org/10.1016/j.ultsonch.2005.05.003
  16. Kang, J. W., Hung, H. M., Lin, A., Hoffman, M. R., 1999, Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation, the role of O3, H2O2, frequency and power density, ES&T., 33, 3199-3205. https://doi.org/10.1021/es9810383
  17. Kidak, R., Ince, N. H., 2007, Catalysis of advanced oxidation reactions by ultrasound, a case study with phenol, J. of Haz. Mat., 146, 630-635. https://doi.org/10.1016/j.jhazmat.2007.04.106
  18. Lau, T. K., Chu, W., Graham, M., 2005, The degradation of endocrine disruptor di-n-butyl phthalate by UV irradiation: a photolysis and product study, Chemosphere, 60, 1045-1053. https://doi.org/10.1016/j.chemosphere.2005.01.022
  19. Legrini, O., Oliveros, E., Braun, A. M., 1993, Photochemical processes for water treatment, Chem. Rev., 93, 671-698. https://doi.org/10.1021/cr00018a003
  20. Malato, S., Fernandez-Ibanez, P., Maldonado, M. I., Blanco, J., Gernjak, W., 2009, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Cat. Today, 147, 1-59. https://doi.org/10.1016/j.cattod.2009.06.018
  21. Ning, B., Graham, N. J. D., Zhang, Y., 2007, Degradation of octylphenol and nonylphenol by ozone-part II: Indirect reaction, Chemosphere, 68, 1173-1179. https://doi.org/10.1016/j.chemosphere.2007.01.056
  22. Petrier, C., Francony, A., 1997, Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation, Ult. Sono., 4, 295-300. https://doi.org/10.1016/S1350-4177(97)00036-9
  23. Psillakis, E., Mantzavinos, D., Kalogerakis, N., 2004, Monitoring the sonochemical degradation of phthalate esters in water using solid-phase microextraction, Chemosphere, 54, 849-857. https://doi.org/10.1016/j.chemosphere.2003.09.039
  24. Xu, B., Gao, N. Y., Sun, X. F., Xia, S. J., Rui, M., Simonnot, M. O., Causserand, C., Zhao, J. F., 2007, Photochemical degradation of diethyl phthalate with UV/H2O2, J. Haz. Mat. B139, 132-139.
  25. Yang, G. P., Zhao, X. K., Sun, X. J., Lu, X. L., 2005, Oxidative degradation of diethyl phthalate by photochemically enhanced Fenton reaction, J. Haz. Mat., B126, 112-118.
  26. Yim, B., Maeda, Y., 2002, Acoustic cavitation assisted decomposition of 4-nonylphenol in water, Chemistry Letter, 452-453.
  27. Yim, B., Yoo, Y., Maeda, Y., 2003, Sonolysis of allkylphenols in aqueous solution with Fe (II) and Fe (III), Chemosphere, 50, 1015-1023. https://doi.org/10.1016/S0045-6535(02)00665-3
  28. Yuan, S. Y., Liu, C., Liao, C. S., Chang, B. V., 2002, Occurrence and microbial degradation of phthalate esters in Taiwan river sediments, Chemosphere, 49, 1295-1299. https://doi.org/10.1016/S0045-6535(02)00495-2
  29. Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., Hoffmann, M. R., 2008, Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products, J. Phys. Chem. A., 112, 4261-4270. https://doi.org/10.1021/jp801081y
  30. Vinodgopal, K., Ashokkumar, M., Grieser, F., 2001, Sonochemical degradation of a polydisperse nonylphenol ethoxylate in aqueous solution, J. Phys. Chem. B., 105, 3338-3342. https://doi.org/10.1021/jp004178j