DOI QR코드

DOI QR Code

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames

합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과

  • Vu, Tran Manh (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.) ;
  • Song, Won-Sik (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.) ;
  • Park, Jeong (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.) ;
  • Kwon, Oh-Boong (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.) ;
  • Bae, Dae-Seok (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.) ;
  • Yun, Jin-Han (Environment & Energy Systems Research Divison, Korea Institute of Machinery and Materials) ;
  • Keel, Sang-In (Environment & Energy Systems Research Divison, Korea Institute of Machinery and Materials)
  • ;
  • 송원식 (부경대학교 기계공학과) ;
  • 박정 (부경대학교 기계공학과) ;
  • 권오붕 (부경대학교 기계공학과) ;
  • 배대석 (부경대학교 기계공학과) ;
  • 윤진한 (한국기계연구원 그린환경에너지기계연구본부) ;
  • 길상인 (한국기계연구원 그린환경에너지기계연구본부)
  • Received : 2010.08.09
  • Accepted : 2010.11.20
  • Published : 2011.02.01

Abstract

Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

본 연구에서는 합성가스-공기 화염의 셀 불안정성에 있어서 탄화수소 연료의 첨가효과를 알아보기 위하여 상온, 고압, 정적상태의 연소실에서 실험을 수행하였다. 층류화염전파속도는 상세반응기구와 전달물성치를 사용하여 계산하였고 이를 실험으로 측정된 값과 비교하였다. 탄화수소 연료가 첨가된 합성가스-공기 화염의 셀 불안정성은 수력학적 불안정성과 확산-열 불안정성의 관점에서 평가되며 희박예혼합 화염에 대해 실험으로부터 측정된 셀불안정성을 유발하는 임계 Peclet 수는 이론적으로 얻어진 값과 비교하였다. 실험결과는 반응혼합물에 탄화수소 계 연료의 첨가량이 증가할수록 화염전파속도는 감소함을 보였다. 합성가스-공기화염에 프로판과 부탄을 첨가하였을 경우 수력학적 불안정성과 확산-열 불안정성이 감소하여 셀 형성은 현저하게 감소하였다. 반면 메탄을 첨가하였을 경우 셀 불안정성이 완화되는 효과는 없었다.

Keywords

References

  1. Prathap, C., Ray, A. and Ravi, M. R., 2008, “Investigation of Nitrogen Dilution Effects on the Laminar Burning Velocity and Flame Stability of Syngas Fuel at Atmospheric Condition,” Combust. Flame, Vol. 155, pp. 145-160. https://doi.org/10.1016/j.combustflame.2008.04.005
  2. Natarajan, J., Lieuwen, T. and Seitzman, J., 2007, "Laminar Flame Speeds of $H_2$/CO Mixtures: Effect of $CO_2$ Dilution, Preheat Temperature, and Pressure," Combust. Flame, Vol. 151, pp. 104-119. https://doi.org/10.1016/j.combustflame.2007.05.003
  3. Park, J., Lee, D. H., Yoon, S. H., Vu, T. M., Yun, J. H. and Keel, S. I., 2009, "Effects of Lewis number and Preferential Diffusion on Flame Characteristics in $80%H_2$/20%CO Syngas Counter Flow Diffusion Flames Diluted with He and Ar," Int. J. Hydrogen Energy, Vol. 34, pp. 1578-1584. https://doi.org/10.1016/j.ijhydene.2008.11.087
  4. Law, C. K., Sung, C. J., Wang, H. and Lu, T. F., 2003, "Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Combustion Modeling," AIAA Journal, Vol. 41, pp. 1629-1646. https://doi.org/10.2514/2.7289
  5. Bradley, D., Hicks, R. A. and Lawes, M., 1998, "The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane-Air and Iso-Octane-N-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb," Combust. Flame, Vol. 115, pp. 126-144. https://doi.org/10.1016/S0010-2180(97)00349-0
  6. Milton, B. E. and Keck, J. C., 1984, "Laminar Burning Velocities in Stoichiometric Hydrogen and Hydrogen-Hydrocarbon Gas Mixtures," Combust. Flame, Vol. 58, pp. 13-22. https://doi.org/10.1016/0010-2180(84)90074-9
  7. Williams, F. A., Combustion Theory, 2nd edition, Addison-Wesley, Redwood, CA: 1985, p. 349.
  8. Kadowaki, S., 2005, "The Effects of Heat Loss on the Burning Velocity of Cellular Premixed Flames Generated by Hydrodynamic and Diffusive-Thermal Instabilities," Combust. Flame, Vol. 143 pp.174-182. https://doi.org/10.1016/j.combustflame.2005.05.012
  9. Darrieus, G., 1938, "Propagation d’un Front de Flame," La Technique Moderne, 30:18.
  10. Landau, L. D., 1944, "On the Theory of Slow Combustion," Acta Physicochim, URSS, Vol. 19, pp. 77-88.
  11. Kadowaki, S., Suzuki H. and Kobayashi, H., 2005, "The Unstable Behavior of Cellular Premixed Flames Induced by Intrinsic Instability," Proc. Combust. Inst., Vol.30, pp. 169-176. https://doi.org/10.1016/j.proci.2004.07.041
  12. Sivashinsky, G. I., 1977, "Diffusional-Thermal Theory of Cellular Flames," Combust. Sci. Tech., Vol. 15, pp. 137-146. https://doi.org/10.1080/00102207708946779
  13. Bechtold, J. K. and Matalon, M., 1987, "Hydrodynamic and Diffusion Effects on the Stability of Spherically Expanding Flames," Combust. Flame, Vol. 67 pp. 77-90. https://doi.org/10.1016/0010-2180(87)90015-0
  14. Tse, S. D., Zhu, D. L. and Law, C. K., 2000, “Morphology and Burning Rates of Expanding Spherical Flames in $H_2/O_2$/Inert Mixtures up to 60 Atmospheres," Proc. Combust. Inst., Vol. 28, pp. 1793-1800. https://doi.org/10.1016/S0082-0784(00)80581-0
  15. Huang, Z., Zhang, Y., Zeng, K., Liu, B., Wang, Q. and Jiang, D., 2006, "Measurements of Laminar Burning Velocities for Natural Gas-Hydrogen-Air Mixtures," Combust. Flame, Vol. 146, pp. 302-311. https://doi.org/10.1016/j.combustflame.2006.03.003
  16. Huang, Z., Zhang, Y., Wang, Q., Wang, J., Jiang, D. and Miao, H., 2006, "Study on Flame Propagation Characteristics of Natural Gas-Hydrogen-Air Mixtures," Energy & Fuels, Vol. 20, pp. 2385-2390. https://doi.org/10.1021/ef060334v
  17. Law, C. K., Jomaas, G. and Bechtold, J. K., 2005, "Cellular Instabilities of Expanding Hydrogen /Propane Spherical Flames at Elevated Pressures: Theory and Experiment," Proc. Combust. Inst., Vol. 30, pp. 159-167. https://doi.org/10.1016/j.proci.2004.08.266
  18. Law, C. K. and Kwon, O. C., 2004, "Effects of Hydrocarbon Substitution on Atmospheric Hydrogen-Air Flame Propagation," International Journal of Hydrogen Energy, Vol. 29, pp. 867-879. https://doi.org/10.1016/j.ijhydene.2003.09.012
  19. Tang, C., Huang, Z., Wang, J. and Zheng, J., 2009, "Effects of Hydrogen Addition on Cellular Instabilities of the Spherically Expanding Propane Flames," Int. J. Hydrogen Energy, Vol. 34, pp. 2483-2487. https://doi.org/10.1016/j.ijhydene.2009.01.023
  20. Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. and Miller, J. A., 1992, "A Fortran Computer Code Package for the Evaluation of Gas-Phase, Multi-Component Transport Properties," Albuquerque, NM: Sandia National Laboratories; [Report SAND86-8246].
  21. Kee, R. J., Grcar, J. F., Smooke, M. D. and Miller, J. A., 1993, "A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames," Albuquerque, NM: Sandia National Laboratories; [Report SAND85-8240].
  22. Davis, S. G,. Joshi, A. V., Wang, H. and Egolfopoulos, F., 2005, "An Optimized Kinetic Model of $H_2$/CO Combustion," Proc. Combust. Inst. Vol. 30, pp. 1283-1292. https://doi.org/10.1016/j.proci.2004.08.252
  23. Wang, H., You, X., Joshi, A. V., Davis, S. G., Laskin, A., Egolfopoulos, F. et al., ;May 2007.
  24. Addabbo, R., Bechtold, J. K., Matalon, M., 2002, "Wrinkling of Spherically Expanding Flames," Proc. Combust. Inst. Vol. 29, pp. 1527-1535. https://doi.org/10.1016/S1540-7489(02)80187-0
  25. Egolfopoulos, F. N. and Law, C. K., 1990, "Chain Mechanisms in the Overall Reaction Orders in Laminar Flame Propagation," Combust. Flame Vol. 80, pp. 7-16. https://doi.org/10.1016/0010-2180(90)90049-W
  26. Kwon, O. C., Rozenchan, G. and Law, C. K., 2002, "Cellular Instabilities and Self-Acceleration of Outwardly Propagating Spherical Flames," Proc. Combust. Inst. Vol. 29, pp. 1775-1783. https://doi.org/10.1016/S1540-7489(02)80215-2

Cited by

  1. -Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave vol.38, pp.2, 2014, https://doi.org/10.3795/KSME-B.2014.38.2.173