DOI QR코드

DOI QR Code

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization

해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경

  • Kang, Ji-Hoon (Department of Earth and Environmental Sciences, Andong National University) ;
  • Lee, Deok-Seon (Department of Earth and Environmental Sciences, Andong National University) ;
  • Ryoo, Chung-Ryul (Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Koh, Sang-Mo (Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM)) ;
  • Chi, Se-Jung (Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
  • 강지훈 (안동대학교 지구환경과학과) ;
  • 이덕선 (안동대학교 지구환경과학과) ;
  • 류충렬 (한국지질자원연구원 광물자원연구본부) ;
  • 고상모 (한국지질자원연구원 광물자원연구본부) ;
  • 지세정 (한국지질자원연구원 광물자원연구본부)
  • Received : 2011.08.23
  • Accepted : 2011.10.19
  • Published : 2011.10.28

Abstract

An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.

옥천변성대 남서부에 위치하는 전남 해남군 황산면 모이산 지역에는 백악기 말 유천층군 해남층의 황산 화산쇄설 암을 모암으로 하는 천열수 금-은 광화대가 발달한다. 본 연구는 광화대의 형성과 관련된 지질구조를 파악하기 위해 모이산 지역의 층리배열, 습곡, 단층, 단열계, 석영맥의 특성, 단열계의 상대적인 발달순서 등을 조사하였고, 이를 바탕으로 광화작용이 발생할 당시의 지구조환경을 고찰해 보았다. 층리는 동북동 주향 방향이 우세하며 북북서 내지 남남동 방향의 저각 경사를 보이고 분산된 층리 배열은 경사-이동 단층 이외에 (동)북동 방향의 준수평-직립 개방습곡에 의해 규제되어 있다. 단열계는 적어도 6~7회의 변형단계를 걸쳐 형성되었다. D1 단계; 연장성이 우세한 동서 (D1-1)와 남북(D1-2) 방향의 주 단열조 형성기, D2 단계; 북서 방향의 인장단열 형성기, 동서(우수향)와 남북(좌수향) 방향의 공액 전단단열 운동기, D3 단계; 북동 방향의 인장단열 형성기, 동서(좌수향)와 남북(우수향) 방향의 공액 전단단열 재활동기, D4 단계; 연장성이 미약한 남북 방향의 인장단열 형성기, D5 단계; 북서 방향의 인장단열 재형성기. 동서(우수향)와 남북(좌수향)방향의 공액 전단단열 재활동기, D6 단계; 연장성이 미약한 동서 방향의 인장단열 형성기. 변형단계별 단열조의 출현빈도는 D1-1(19.73 %)> D1-2(16.44 %)> D3=D5(14.79 %)> D2(13.70 %)> D4(12.33 %)> D6(8.22 %) 순으로 우세하게 나타나고 평균개수/1 m는 D6(5.00개)> D5 = D4(4.67개)> D2(4.60개)> D3(4.13개)> D1-1(3.33개)> D1-2(2.83개) 순으로 높게 나타난다. 전체 단열조의 평균 조밀도는 420개로서 모이산 지역의 단열조는 평균 23.8 cm 간격 이상으로 발달한다. 석영맥의 방향성별 출현빈도는 동서 방향(52 %)> 북서 방향(28 %)> 남북 방향(12 %)> 북동 방향(8 %) 순으로 우세하게 나타난다. 전체 석영맥의 평균 조밀도는 4.14개로 나타나고 모이산 지역의 석영맥은 평균 24.2 cm 간격 이상으로 발달한다. 석영맥에 대한 미구조 연구결과, 천열수 금-은 광화작용(약 77.9~73.1 Ma)은 지구조적 응력이 아닌 천열수 파괴 단열작용과 직후의 정적인 지구조환경 하에서 기존에 형성된 연장성이 우세한 D1 단계의 동서 방향과 남북 방향의 단열조를 따라 발생한 것으로 보인다. 모이산 지역의 D1 단열작용은 유천층군과 불국사 화성압류의 화성활동과 변형을 초래하는 후기 백악기 이자나기판의 북향-사교 섭입작용과 관련하여 남북 방향의 압축력과 인정력이 교호하는 불안정한 지구조환경 하에서 발생하였던 것으로 고찰된다.

Keywords

Acknowledgement

Grant : 천열수 금광화대 및 열수변질 점토광화대 확보를 위한 전주기 기술개발

Supported by : 한국지질자원연구원

References

  1. Bowden, C.D. (2007) Epithermal systems of the Seongsan district, South Korea; an investigation on the geological setting and spatial and temporal relationships between high and low sulfidation systems. Ph.D. thesis, James Cook University, Australia, 334p.
  2. Choi, P.-Y. and Choi, Y.S. (2007) Stress Model of the Opening of the Cretaceous Eumseong Basin. KIGAM Bulletin, v.11, p.3-16.
  3. Choi, P.-Y., Choi, H.-Y., Hwang, J.-H., Kee, W.-S., Choi, Y.S., Lee, B.-J. and Kim, Y.B. (2002a) Explanatory note of the Mokpo and Yeosu sheets (1:250,000). KIGAM, 25p.
  4. Choi, P.-Y., Kwon, S.-K., Lee, S.R., Hwang, J.-H., Angelier, J. and An, G.-O. (2002b) Late Mesozoic-Cenozoic tectonic sequence of Southeast Korea. In Jin, M.-S., Lee, S.R., Choi, H.-I., Park, K.-H., Koh, S.-M. and Cho, D.-L.(ed.) Mesozoic sedimentation, igneous activity and mineralization in South Korea. KIGAM, p.52-88.
  5. Choi, P.-Y., Lee, S.R., Choi, H.I., Hwang, J.-H., Kwon, S.- K., Ko, I.-S. and An, G.-O. (2002c) Movement history of the Andong Fault System: Geometric and tectonic approaches. Geosciences Journal, v.6, p.91-102.
  6. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.-M., Kim, C.S. and Park, M.-E. (2005) Cretaceous epithermal goldsilver mineralization and geodynamic environment, Korea. Ore Geology Reviews, v.26, p.115-135. https://doi.org/10.1016/j.oregeorev.2004.10.005
  7. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arcbackarc system in the Korean penisula: New view. Earth Science Reviews, v.101, p.225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  8. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula; a review and new view. Earth Science Reviews, v.52, p.175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  9. Chun, S.S. and Chough, S.K. (1995) The Cretaceous Uhangri Formation, SW Korea: lacustrine margin facies. Sedimentology, v.42, p.293-322. https://doi.org/10.1111/j.1365-3091.1995.tb02104.x
  10. Eyal, Y., Gross, M.R., Engelder, T. and Becker, A. (2001) Joint development during fluctuation of the regional stress field in southern Israel. Journal of Structural Geology, v.23, p.279-296. https://doi.org/10.1016/S0191-8141(00)00096-1
  11. Hancock, P.L., Al Kadhi, A. and Sha'at, N.A. (1984) Regional joint sets in the Arabian Platform as indicators of intraplate processes. Tectonics, v.3, p.27-43. https://doi.org/10.1029/TC003i001p00027
  12. Jeong, J.O. and Jwa, Y.J., (2000) Volcanic stratigraphy and petrology of Cretaceous volcanic rocks in the eastern part of the Euiseong Basin. Jour. Petrol. Soc. Korea v.9, p.238-253.
  13. Kang, J.-H. and Ryoo, C.-R. (2006) Geometrical Interpretation on the development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea. Jour. Petrol. Soc. Korea, v.15, p.180-193.
  14. Kim, C.S. and Choi, S.G. (2009) Potassium-Argon ages of the epithermal gold-silver mineralizaton in the Haenam- Jindo area, southwestern Korea. Resource Geology, v.59, p.415-421. https://doi.org/10.1111/j.1751-3928.2009.00108.x
  15. Kim, E.-J., Hong, Y.-K. and Chi, S.-J. (2011) Geochemical Variation of Hwangsan Volcanic Complex by Large Hydrothermal Alteration. Econ. Environ. Geol., v.44, p.95-107. https://doi.org/10.9719/EEG.2011.44.2.095
  16. Kim, I.J. and Nagao, K. (1992) K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea. Jour. Petrol. Soc. Korea, v.1, p.58-70.
  17. Koh, S.M. (1996) Geochemical characteristics of the Cretaceous volcanic rocks and Bukok hydrothermal deposits in the Haenam volcanic field, Chollanamdo, Korea. Unpublished Ph.D. thesis, Seoul National University, Korea, 181p.
  18. Koh, S.M. and Chang, H.W. (1997) Geological and geochemical characteristics of the Bukok hydrothermal clay deposits in the Haenam area, Korea. Resource Geology, v.47, p.29-40.
  19. Koh, S.M., Kim, H.-S., Kim, C.K., Yi, M.-J., Jo, Y.-D., Yoo, J.H., Jeong, S.-B., Ryoo, C.-R., Kim, Y.-D., Heo, C.-H., Kim, Y.U., Park, S.-G., Lee, D.K., Son, J.-S., Kim, T.- K., Hong, Y.-K., Park, S.-W., Yang, D.H., Park, J.-T., Kim, S.K., Sohn, J.-S., Lee, J.H., Chi, S.-J., Seo, J.-R., Ko, I.-S., Lee, H.Y., Kim, I.J., Kim, D.-O. and Lee, T.- S. (2009) Technical development on the life cycle of the Haenam epithermal gold mineralized area and hydrothermal clay resources. MKE, GP2009-003- 2009(1), 182p.
  20. Koh, S.M., Takagi, T., Kim, M.Y., Hong, S.S. and Sudo, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in South Korea. Resource Geology, v.50, p.229-242. https://doi.org/10.1111/j.1751-3928.2000.tb00072.x
  21. Lee D.-S. and Kang, J.-H. (2009) Movement History of Faults Considered from the Geometric and Kinematic Characteristics of Fracture System in Gilan-cheongsong Area, Gyeongsang Basin, Korea. Jour. Petrol. Soc. Korea, v.18, p.293-305.
  22. Lee, D.W. (1999) Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. The Island Arc, v.8, p.218-231. https://doi.org/10.1046/j.1440-1738.1999.00233.x
  23. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. The Island Arc, v.6, p.121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  24. Park, S.-I., Kim, Y.-S., Ryoo, C.-R. and Sanderson, D.J. (2010) Fractal analysis of the evolution of a fracture network in a granite outcrop, SE Korea. Geosciences Journal, v.14, p.201-215. https://doi.org/10.1007/s12303-010-0019-z
  25. Peacock, D.C.P. (2001) The temporal relationship between joints and faults. Journal of Structural Geology, v.23, p.329-341. https://doi.org/10.1016/S0191-8141(00)00099-7
  26. Petit, J.-P. (1988) Can natural fractures propagate under mode II condition?. Tectonics, v.7, p.1243-1256. https://doi.org/10.1029/TC007i006p01243
  27. Pollard, D.D. and Aydin, A. (1988) Progress in understanding jointing over the past century. Geological Society of America Bulletin, v.100, p.1181-1204.1: 50,000. https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
  28. Rawnsley, K.D., Peacock, D.C.P., Rives, T. and Petit, J.P. (1998) Jointing in the Mesozoic sediments around the Bristol Channel Basin. Journal of Structural Geology, v.20, p.1641-1661. https://doi.org/10.1016/S0191-8141(98)00070-4
  29. Reches, Z. and Lockner, D.A. (1994) Nucleation and growth of faults in brittle rocks. Journal of Geophysical Research, v.99, p.18159-18174. https://doi.org/10.1029/94JB00115
  30. Son, M., Chong, H.-Y. and Kim, I.-S. (2002) Geology and geological structures in the vicinities of the southern part of the Yonil tectonic line, SE Korea. Jour. Geol. Soc. Korea, v.38, p.175-197.
  31. Son, M., Kim, J.-S., Chong, H.-Y., Lee, Y.H. and Kim, I.- S. (2007) Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. Korean Jour. of Petrol. Geol., v.13, p.1-16.

Cited by

  1. Occurrence and Geochemical Characteristics of the Haenam Pb-Zn Skarn Deposit vol.47, pp.4, 2014, https://doi.org/10.9719/EEG.2014.47.4.363
  2. Characteristics of Lode Development and Structural Interpretation for the High Au Contents within the Fault Gouge Zones in Jinsan Au Mine, Chungcheongnam-do vol.48, pp.2, 2015, https://doi.org/10.9719/EEG.2015.48.2.103
  3. Characterization of Selenium (Se) Distribution in Soils and Crops at Moi-san, Haenam vol.48, pp.3, 2015, https://doi.org/10.9719/EEG.2015.48.3.213