DOI QR코드

DOI QR Code

The Rheological Characteristics of Wyoming Bentonite: Role of Salinity

와이오밍 벤토나이트의 유변학적 특성: 염분농도의 역할

  • Received : 2011.07.19
  • Accepted : 2011.10.06
  • Published : 2011.10.31

Abstract

The rheological properties of Wyoming bentonites are strongly influenced by the size of particles, cation exchangeable capacity, arrangement and morphology of clay mineral. This paper presents the results of rheological investigations on the Wyoming bentonites aqueous dispersions: two types of particle flocculation were considered. For the Wyoming bentonite, 0g/L and 30g/L NaCl equivalent salinity were added in fresh and salt water to examine the rheological behavior. This paper examined the general rheological characteristics, compatibility of rheological models and correlation between soil structure and change in rheological properties of Wyoming bentonite caused by increasing salinity. From flow curves of bentonites hydrated with fresh water and salt water, the observed general flow behavior is very close to shear thinning with yield stress (or ideal Bingham fluid with yield stress and plastic viscosity). However, the change of shear stress at the same shear rate is clear, particularly for lower shear rate. Well-known rheological models are used to fit the data. There is a good agreement between rheological model and data: Carreau, Herschel-Bulkley and power-law for S=0g/L and bilinear, Herschel-Bulkley and power-law for S=30g/L. It may be due to the fact that the internal structural bonding (strong modification of particle-particle interactions from edge-to-edge and/or edge-to-face to face-to-face) in soil matrix is affected from the evolution of rheological properties with different salinities.

팽윤성 점토의 전단강도 및 유변학적 특성은 점토입자의 크기, 양이온 교환능력, 점토광물학적 조성과 형상 등에 영향을 받는다. 본 연구는 고운 분말가루의 와이오밍(Wyoming) 벤토나이트에 대해 염화나트륨 0g/L 와 30g/L 농도로 24시간 수화시킨 후 염분농도에 따른 물성-강도특성 및 유변학적 특성변화를 살펴봄으로써, 유변학적 특성, 유변화적 모델들의 적용성 및 흙 입자의 구조변화에 따른 항복응력-점도와의 상관관계를 설명하고자 한다. 실험결과에 따르면, 팽윤성 점토는 전단담화(shear thinning)와 항복응력과 소성점도로 표현가능한 Bingham 유체 거동을 보이는 것으로 조사되었다. 염분농도가 낮고 함수비가 높아질수록 벤토나이트는 완전소성거동에 가깝게 나타나며, 전단변형률속도에 따른 변화의 폭이 미미한 것으로 조사되었다. 반면, 염분농도가 높아질수록 전형적인 전단담화거동을 보이며, 전단변형률속도를 증가시킬수록 염분농도에 따른 벤토나이트의 전단강도의 차이는 커진다. S=0g/L에 대해 Carreau, Herschel-Bulkley 및 멱수법칙 모델이, S=30g/L에 대해서는 이중선형, Herschel-Bulkley 및 멱수법칙 모델 등이 흐름특성을 가장 잘 표현한다. 이것은 염분농도에 따른 흙 입자간 구조적 배열과 형상이 입자간 발생하는 인력인 능-능(EE), 능-면(EF), 및 면-면(FF) 구조를 변화시키고 역학적 특성에 영향을 미치기 때문이다.

Keywords

References

  1. 노진환 (2002), "국내산 벤토나이트에 대한 응용광물학적 특성 평가(I): 광물 조성 및 특징과 양이온 교환특성과의 연계성", 한국광물학회지, 제15권 제4호, pp.329-344.
  2. 정승원 (2011), "세립토 위주의 토석류에 관한 유변학적 모델: 입자크기 효과", 한국지반공학회 논문집, 제27권 제6호, pp.49-61.
  3. ASTM D 5890, (2002), "Standard test method for swell index of clay mineral component of geosynthetic clay liners", Annual book of ASTM standards, 04.13, pp.232-234.
  4. Bardou, E., Bowen, P., Boivin, P., and Banfill, P. (2006), "Impact of small amounts of swelling clays on the physical properties of debris flow-like granular materials: Implications for the study of alpine debris flow", Earth surface processes and landforms, Vol.32, pp.698-710.
  5. Barnes, H. A. (1999), "The yield stress-a review or '$\pi\alpha\nu\tau$ $\rho\varepsilon\prime$'- everything flows?", J. Non-Newtonian Fluid Mechanics, Vol.81, pp.133-178. https://doi.org/10.1016/S0377-0257(98)00094-9
  6. Benna, M., Kbir-Ariguib, N., Magnin, A., and Bergaya, F. (1999), "Effect of pH on rheological properties of purified sodium bentonite suspensions", J. Colloid Interface Sci., 218, 442-455. https://doi.org/10.1006/jcis.1999.6420
  7. Boivin, P., Bardou, E., and Pfeifer, H. R. (2004), Role and behaviour of clay minerals in alpine debris flows, Eos Trans. AGU, 85, Fall Meet. Suppl., Abstract, H43G-03.
  8. Boger, D. V. (1977), "Demonstration of upper and lower Newtonian fluid behaviour in a pseudoplastic fluid", Nature, 265, 126-128. https://doi.org/10.1038/265126a0
  9. Churchman, G. J., Askary, M., Peter, P., Wright, M., Raven, M. D., and Self, P. G. (2002), "Geotechnical properties indicating environmental uses for an unusual Australian bentonite", Appl. Clay Sci., Vol.20, pp.199-209. https://doi.org/10.1016/S0169-1317(01)00078-3
  10. Collyer, A. A. (1973), "Time independent fluids", Phys. Education, Vol.8, No.5, pp.333-338. https://doi.org/10.1088/0031-9120/8/5/009
  11. Coussot, P., Nguyen, G. D., Huynh, H. T., and Bonn, D. (2002), "Viscosity bifurcation in thixotropic, yielding fluids", J. Rheol., Vol.46, pp.573-589. https://doi.org/10.1122/1.1459447
  12. Coussot, P., and Piau, J.-M. (1994), "On the behavior of fine mud suspensions", Rheol. Acta., Vol.33, pp.175-184. https://doi.org/10.1007/BF00437302
  13. Garcia-Garcia, S., Jonsson, M., and Wold, S. (2006), "Temperature effect on the stability of benonite colloids in water", J. Colloid Interface Sci., Vol.298, pp.694-705. https://doi.org/10.1016/j.jcis.2006.01.018
  14. Gungor, N. (2000), "Effect of the Adsorption of surfactants on the rheology of Na-bentonite slurries", J. Appl. Plymer Sci., Vol.75, pp.107-110. https://doi.org/10.1002/(SICI)1097-4628(20000103)75:1<107::AID-APP12>3.0.CO;2-P
  15. Huynh, H. T, Roussel, N., and Coussot, P. (2005). "Aging and free surface flow of a thixotropic fluid", Phys. Fluids, 17, 033101. https://doi.org/10.1063/1.1844911
  16. Imran, J., Parker, G., Locat, J., and Lee, H. (2001), "1D numerical model of muddy subaqueous and subaerial debris flows", J. Hydr. Eng., Vol.127, pp.959-968. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(959)
  17. Jeong, S. W. (2006), Influence of physico-chemical characteristics of fine-grained sediments on their rheological behavior, PhD Thesis, Laval University, Quebec, Canada.
  18. Jeong, S. W., Locat, J., and Leroueil, S. (2004), "A preliminary analysis of the rheological transformation due to water infiltration as a mechanism for high mobility of submarine mass movements", 57th Canadian Geotechnical Conference, Quebec, Session 7G, pp.15-22
  19. Jeong, S. W., Leroueil, S. and Locat, J. (2009), "Applicability of power law for describing the rheology of soils of different origins and characteristics", Can. Geotech. J., Vol.46, pp.1011-1023. https://doi.org/10.1139/T09-031
  20. Jeong, S. W., Locat, J., Leroueil, S., and Malet, J.-P. (2010), "Rheological properties of fine-grained sediments: the roles of texture and mineralogy", Can. Geotech. J., Vol.47, pp.1085-1100. https://doi.org/10.1139/T10-012
  21. Jeong, S. W. (2010), "Grain size dependent rheology on the mobility of debris flows", Geosciences J., Vol.14, pp.359-369. https://doi.org/10.1007/s12303-010-0036-y
  22. Jeong, S. W., Locat, J., and Leroueil, S. (2011), "The effects of salinity and shear history on the rheological characteristics of illite-rich and Na-montmorillonite-rich clays", Submitted to Clays and clay mineral (under review).
  23. Khaldoun, A., Moller, P., Fall, A., Wegdam, G., De Leeuw, B., Meheust, Y., Fossum J. O., and Bonn, D. (2009), "Quick clay and landslides of clayey soils", Phys. Rev. Lett., Vol.103, 188301. https://doi.org/10.1103/PhysRevLett.103.188301
  24. Lagaly, G. (1989), "Principles of flow of kaolin and bentonite dispersions", Appl. Clay Sci., Vol.4, pp.105-123. https://doi.org/10.1016/0169-1317(89)90003-3
  25. Lambe, T. W., and Whitman, R. V. (1979), Soil Mechanics, SI Version, John Wiley & Sons.
  26. Leroueil, S., Tavenas F., and LeBihan, J. P. (1983), "Propriétés caractéristiques des argiles de l'est du Canada", Can. Geotech. J., Vol.20, pp.681-705. https://doi.org/10.1139/t83-076
  27. Locat, J., and Demers, D. (1988), "Viscosity, yield stress, remoulded strength, and liquidity index relationships for sensitive clays", Can. Geotech. J., Vol.25, pp.709-806.
  28. Locat, J. (1997), "Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime", Proc. 1stInt. Conf. on Debris-Flow Hazards Mitigation, San Francisco, ASCE, New York, pp.260-269.
  29. Locat, J., Lee, H. J., Locat, P. and Imran, J. (2004), "Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis", Mar. Geol., Vol.203, pp.269-280. https://doi.org/10.1016/S0025-3227(03)00310-4
  30. Luckham, P. F., and Rossi, S. (1999), "The colloidal and rheological properties of bentonite suspensions", Adv. Colloid Interface Sci., Vol.82, pp.43-92. https://doi.org/10.1016/S0001-8686(99)00005-6
  31. Malet, J. P., Remaître, A., Maquaire, O., Ancey, C., and Locat, J. (2003), "Flow susceptibility of heterogeneous marly formations. Implications for torrent hazard control in the Barcelonnette basin (Alpes-de-Haute-Provence, France)", In Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation, Rickenmann, D. and Chen, C. L. (eds.), Millpress, Rotterdam, pp.351-362.
  32. Miano, F., and Rabaioli, M. R. (1994), "Rheological scaling of montmorillonite suspensions: the effect of electrolytes and polyelectrolytes", Colloids and Surfaces A: Physicochemical and engineering aspects, Vol.84, pp.229-237. https://doi.org/10.1016/0927-7757(93)02724-S
  33. Moller, P. C. F., Fall, A. and Bonn, D. (2009), "Origin of apparent viscosity in yield stress fluids below yielding." EPL. Vol.87, 38004- p1-38004-p6. https://doi.org/10.1209/0295-5075/87/38004
  34. Newton, I. (1687), "Philosophiae Naturalis Principia Mathematica", First Ed., London.
  35. Norrish, K. (1954), "The swelling of montmorillonite", Disc. Faraday Soc., Vol.18, pp.120-134. https://doi.org/10.1039/df9541800120
  36. Papanastasiou, T. C. (1987), "Flows of materials with yield", J. Rheol., Vol.31, pp.385-404. https://doi.org/10.1122/1.549926
  37. Perret, D., Locat, J., and Martignoni, P. (1996), "Thixotropic behavior during shear of a fine-grained mud from Eastern Canada", Eng. Geol., Vol.43, pp.31-44. https://doi.org/10.1016/0013-7952(96)00031-2
  38. Petrov, R. J., and Rowe, R. K. (1997), "Geosynthetic clay liner (GCL) - chemical compatibility by hydraulic conductivity testing and factors impacting its performance", Can. Geotech. J., Vol.34, pp.863-885. https://doi.org/10.1139/t97-055
  39. Terzaghi, K., Peck, R. B., and Mesri, G. (1996), Soil mechanics in engineering practice, 3rd edition. John Wiley & Sons, Inc., New York.
  40. Torrance, J. K. (1987), "Shear resistance of remoulded soils by viscometric and fall-cone methods: a comparison for the Canadian sensitive marine clays", Can. Geotech. J., Vol.24, pp.318-322. https://doi.org/10.1139/t87-037
  41. Van Olphen, H. (1963), An introduction to clay colloid chemistry, John Wiley & Sons Inc., New York.
  42. Van Olphen, H. (1964), "Internal mutual flocculation in clay suspension", J. Colloid Science, Vol.19, pp.313-322. https://doi.org/10.1016/0095-8522(64)90033-9