DOI QR코드

DOI QR Code

Agar Gel Barrier의 농도변화에 따른 폭발완화 특성에 관한 실험적 연구

Experimental Investigations on the Characteristics of Explosion Mitigations by Different Concentrations of Agar Gel Barriers

  • 박달재 (서울과학기술대학교 안전공학과) ;
  • 김남일 (서울과학기술대학교 산업대학원 안전공학과)
  • Park, Dal-Jae (Dept. of Safety Engineering, Seoul National University of Science and Technology) ;
  • Kim, Nam-Il (Dept. of Safety Engineering, Graduate School of Industry, Seoul National University of Science and Technology)
  • 투고 : 2011.06.02
  • 심사 : 2011.10.24
  • 발행 : 2011.10.30

초록

폭발챔버에서 Agar gel barrier의 폭발완화 특성을 조사하기 위하여 실험적 연구를 수행하였다. 단면적 $100{\times}100mm^2$, 길이 1400 mm를 가지는 폭발챔버 그리고 폭발챔버의 개구부에 설치될 gel barrier의 고정을 위하여 $100{\times}100{\times}300mm^3$의 챔버를 제작하였다. Agar gel과 물을 혼합하여 4가지 서로 다른 농도(2, 3, 4, 5 %)를 가지는 agar gel barrier를 제조하여 실험변수로 사용하였다. 폭발과정 동안 gel displacement의 가시화를 위해 고속카메라 그리고 gel barrier 전 후단의 폭발압력 변화를 관찰하고자 압력획득시스템을 사용하였다. 실험결과, gel 농도 증가에따라 gel의 파열시간 및 최대 폭발압력 도달시간이 지연되는 것으로 나타났다. 또한, gel 농도가 증가할 때 gelbarrier 전 후단에서의 폭발압력 완화율이 증가하는 경향으로 나타났다.

Experimental studies were carried out to investigate the characteristics of explosion mitigations by varying concentrations of agar gel barriers in an explosion chamber, 1400 mm in length, with a square cross-section of $100{\times}100mm^2$. Another extension chamber, $100{\times}100{\times}300mm^3$, was made to hold a gel barrier. Four different gel concentrations were used in the measurements: 2, 3, 4, 5 %(by weight of gel). Displacement of the gel barrier was measured using a high speed camera, and pressure development was measured using pressure transducers and a data acquisition system. It was found that as the concentrations of the gel barriers increased, the gel rupture time and the time taken to reach the maximum pressure increased. It was also found that the increment of gel concentrations increased the reduction percentage in the maximum pressure between before and after gel barrier.

키워드

참고문헌

  1. 박달재, 이영순, "DME-LPG 혼합연료에 따른 사 고결과 피해예측", KIGAS, 15(2), 57-62, (2011)
  2. Vilchez, J.A., Sevilla, S., Montiel, H. & Casl, J., "Historical analysis of accidents in chemical plants and in the transportation of hazardous materials", Journal of Loss Prevention in the Process Industry, 8(2), 87-97,(1995) https://doi.org/10.1016/0950-4230(95)00006-M
  3. Bjerketvedt, D., Bakke, J.R. & Van wingerden, K., "Gas Explosion Handbook", Journal of Hazardous Materials, 52, 1-150 (1997) https://doi.org/10.1016/S0304-3894(97)81620-2
  4. Marsh, Large property damage losses in the hydrocarbon- chemical industries: The 100 largest losses 1972-2001, 20th ed., Marsh's Risk Consulting Practice, USA, (2003)
  5. HSE, "Review of explosion mitigation measures for platform legs", HSL Report 64, (2006)
  6. Pekalski A.A, Zevenbergen J.F, Lemkowitz S.M and Pasman H.J, "A review of explosion prevention and protection systems suitable as ultimate layer of protection in chemical process installations", Process Safety and Environmental Protection, 83(B1), 1-17, (2005) https://doi.org/10.1205/psep.04023
  7. 홍은정, "가스폭발압력 완화에 미치는 워터겔의 영향", 서울산업대학교 석사학위 논문, (2006)
  8. Biggs, J. M., Introduction to Structural Dynamics, McGraw-Hill, New York, (1964)

피인용 문헌

  1. Mitigation of Blast Pressure according to the Variation of Density and Thickness of the Water Gel vol.13, pp.3, 2013, https://doi.org/10.9798/KOSHAM.2013.13.3.123