DOI QR코드

DOI QR Code

A Study of Risk Reduction by SIL(Safety Integrity Level) Determination

SIL(Safety Integrity Level) 선택에 의한 리스크 감소에 관한 연구

  • Kim, Jung-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Bum-Su (Department of Chemical Engineering, Kwangwoon University) ;
  • Yang, Jae-Mo (Department of Chemical Engineering, Kwangwoon University) ;
  • Jang, Chang-Bong (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Min-Seop (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Jung, Sang-Yong (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Ko, Jae-Wook (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2011.07.02
  • Accepted : 2011.10.29
  • Published : 2011.10.30

Abstract

Modern chemical plants including petroleum refinery and gas industries have evolved into more complex and specialized. In these industrial complexes, it is important to maintain acceptable safety level protecting from various potential disasters caused by fire, explosion and the leakage of toxic materials. Recently possibility and consequence of accidents are increasing in the industrial process. So there is a trade-off between the plant operation efficiency and safety level. In this study SIF(Safety instrument Functions) was incorporated into SIL(Safety Integrity Levels). As a result, the safety level was upgraded by designing resonable allocation of safety instruments.

현대의 화학공장 및 석유 가스산업 시설은 공정 및 설비가 더욱 복잡해지고 세분화됨으로써 산업현장에서는 다양한 잠재위험으로 인하여 화재, 폭발, 독성물질 누출 등의 중대 산업사고의 발생 가능성 및 사고결과의 피해가능 범위가 증가되고 있다. 이러한 위험요소를 줄이기 위하여 공정 내 안전장치를 설치하여 공정의 위험도를 줄여야 하지만, 공장 운전 효율성과 안전도는 서로 적절한 수준을 유지하지 않으면 잦은 검사와 확인으로 효율성을 저해할 수 있다. 그를 위하여 이번 연구에서 SIL(Safety Integrity Level)을 이용한 SIF(Safety Instrument Function)의 추가로 장치의 적절한 사양, 설계를 이루고 공정내의 잠재위험이 사고로 이어지는 것을 방지하여, 화학공장의 안전성을 향상시켰다.

Keywords

References

  1. Health and Safety Executive (HSE), "Reducing risks, protecting people", UK, pp. 136, (2001).
  2. The Instrumentaion & Systems and Automation Society (ISA), "Application of Safety Instrumented Systems to the Process Industries", ANSI / ISA 84.01, NC, (1996).
  3. CCPS, "Guideline for Chemical Process Quantitative Risk Analysis", AIChE, 2nd Edition, New York, pp. 267-276, (2000).
  4. International Electrotechnical Commission (IEC), "Functional safety - Safety Instrumented systems for the process industry", Second edition, IEC 61508, (2003).
  5. Bhimavarapu, K. and P. Stavrianidis, "Safety Integrity Level Analysis for Process: Issues and Methodologies", Process Safety Progress, 19(1), pp 19-24, (2000). https://doi.org/10.1002/prs.680190107

Cited by

  1. Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.750
  2. A Study on FMEDA Process for SIL Certification : A Case Study of a Flame Scanner vol.25, pp.4, 2012, https://doi.org/10.7232/IEIF.2012.25.4.422
  3. A Study on Risk Analysis of Manufacturing Process Using the Bow-Tie Method vol.17, pp.3, 2013, https://doi.org/10.7842/kigas.2013.17.3.33