Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers

전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석

  • Kim, In-Kyo (Department of Advanced Organic Materials Science & Engineering, Kyungpook National University) ;
  • Yeum, Jeong-Hyun (Department of Advanced Organic Materials Science & Engineering, Kyungpook National University)
  • 김인교 (경북대학교 기능물질공학과) ;
  • 염정현 (경북대학교 기능물질공학과)
  • Received : 2011.04.14
  • Accepted : 2011.06.04
  • Published : 2011.11.25

Abstract

Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU)/montmorillonite clay (MMT) nanocomposite nanofibers were prepared using electrospinning technique of aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermal gravimetric analyzer were used to characterize the morphology and properties of the nanocomposite nanofibers. Since PVA, WBPU and MMT are hydrophilic, non-toxic and biocompatible materials, these nanocomposite nanofibers can be used for filter and medical industries as wound dressing materials, antimicrobial filters, etc.

전기방사법을 이용하여 폴리(비닐 알코올)(poly(vinyl alcohol), PVA)/수분산 폴리우레탄(waterborne polyurethane, WBPU)/montmorillonite clay(MMT) 나노복합섬유를 제조하고 특성을 분석하였다. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X선 회절, thermal gravimetric analyzer(TGA) 의 분석장비들을 이용하여 제조된 나노복합섬유의 형태와 구조적, 열적특성을 확인한 결과, 평균직경이 600~900 nm인 나노복합섬유들이 성공적으로 제조되었으며, MMT가 나노섬유 내에 완전박리되어 기존의 고분자 나노섬유에 비해 열적성질이 향상되었음을 확인할 수 있었다. 본 연구를 통해 제조된 나노복합섬유는 친수성이고 생체친화적인 재료들을 이용하여 제조되었으며, 의료 분야를 비롯하여 의류 및 산업용 코팅제, 필터 등의 분야로 이용이 가능할 것으로 보인다.

Keywords

References

  1. L. Li, L. M. Bellan, H. G. Craighead, and M. W. Frey, Polymer, 47, 6208 (2006). https://doi.org/10.1016/j.polymer.2006.06.049
  2. S. S. Feng, L. Mei, P. Anitha, C. W. Gan, and W. Zhou, Biomaterials, 30, 3297 (2009). https://doi.org/10.1016/j.biomaterials.2009.02.045
  3. S. Y. Kwon, E. H. Cho, and S. S. Kim, J. Biomed. Mater. Res. Part B: Appl. Biometer., 83, 276 (2007).
  4. H. Angellier-Coussy, S. Torres-Giner, M. H. Morel, N. Gontard, and E. Gastaldi, J. Appl. Polym. Sci., 107, 487 (2008). https://doi.org/10.1002/app.27108
  5. H. B. Park and Y. M. Lee, J. Membr.Sci., 197, 283 (2002). https://doi.org/10.1016/S0376-7388(01)00663-9
  6. G. A. Abraham, A. A. A. Queiroz, and J. S. Roman, Biomaterials, 22, 1971 (2001). https://doi.org/10.1016/S0142-9612(00)00381-1
  7. D. N. Rockwood, R. E. Akins, I. C. Parrag, and K. A. Woodhousw, Biomaterials, 29, 4783 (2008). https://doi.org/10.1016/j.biomaterials.2008.08.034
  8. C. H. Yang, H. J. Yang, T. C. Wen, M. S. Wu, and J. S. Chang, Polymer, 40, 871 (1999). https://doi.org/10.1016/S0032-3861(98)00300-0
  9. J. Huybrechts, P. Bruylants, A. Vaes, and M. A. De, Prog. Org. Coat., 38, 67 (2000). https://doi.org/10.1016/S0300-9440(00)00083-7
  10. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996). https://doi.org/10.1088/0957-4484/7/3/009
  11. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004). https://doi.org/10.1002/adma.200400719
  12. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.045
  13. G. K. Sangamesh, P. N. Syam, J. Roshan, M. V. Hogan, and C. T. Laurencin, Recent Patents Biomed. Eng., 1, 68 (2008). https://doi.org/10.2174/1874764710801010068
  14. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer, 49, 5603 (2008). https://doi.org/10.1016/j.polymer.2008.09.014
  15. H. W. Lee, M. R. Karim, J. H. Park, H. D. Ghim, J. H. Choi, K. Kim, Y. Deng, and J. H. Yeum, J. Appl. Polym. Sci., 111, 132 (2009). https://doi.org/10.1002/app.29033
  16. H. W. Lee, M. R. Karim, J. H. Park, D. G. Bae, W. Oh, I. W. Cheong, and J. H. Yeum, Polym. Polym. Compos., 17, 47 (2009).
  17. H. W. Lee, M. R. Karim, H. M. Ji, J. H. Choi, H. D. Ghim, S. M. Park, W. Oh, and J. H. Yeum, J. Appl. Polym. Sci., 113, 1860 (2009). https://doi.org/10.1002/app.30165
  18. M. R. Karim, H. W. Lee, R. Kim, B. C. Ji, J. W. Cho, T. W. Son, W. Oh, and J. H. Yeum, Carbohydr. Polym., 78, 336 (2009). https://doi.org/10.1016/j.carbpol.2009.04.024
  19. J. H. Park, H. W. Lee, D. K. Chae, W. Oh, J. D. Yun, Y. Deng, and J. H. Yeum, Colloid Polym. Sci., 287, 943 (2009). https://doi.org/10.1007/s00396-009-2050-z
  20. H. M. Ji, H. W. Lee, M. R. Karim, I. W. Cheong, E. A. Bae, T. H. Kim, M. S. Islam, B. C. Ji, and J. H. Yeum, Colloid Polym. Sci., 287, 751 (2009). https://doi.org/10.1007/s00396-009-2019-y
  21. J. H. Park, M. R. Karim, I. K. Kim, I. W. Cheong, J. W. Kim, J. W. Cho, and J. H. Yeum, Colloid Polym. Sci., 288, 115 (2010). https://doi.org/10.1007/s00396-009-2147-4
  22. J. H. Yang, N. S. Yoon, J. H. Park, I. K. Kim, I. W. Cheong, Y. Deng, W. Oh, and J. H. Yeum, J. Appl. Polym. Sci., 120, 2337 (2011). https://doi.org/10.1002/app.33435
  23. G. D. Barber, B. H. Calhoun, and R. B. Moore, Polymer, 46, 6706 (2005). https://doi.org/10.1016/j.polymer.2005.05.024
  24. J. Zhu, X. Wang, F. Tao, G. Xue, T. Chen, P. Sun, Q. Jin, and D. Ding, Polymer, 48, 7590 (2007). https://doi.org/10.1016/j.polymer.2007.11.009