DOI QR코드

DOI QR Code

Electrode Properties of Li-ion Batteries using $TiO_2$-based Composite Nanowires

$TiO_2$기반 복합 나노선을 이용한 리튬이온 배터리의 전극 특성 연구

  • An, Geon-Hyoung (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 안건형 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2011.08.30
  • Accepted : 2011.09.19
  • Published : 2011.09.30

Abstract

we successfully synthesized $TiO_2$-Ag composite nanowires via an electrospinning method and investigated the relationship between their electrochemical properties and structures by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cycler. It is shown that the $TiO_2$-Ag composite nanowires exhibit superior electrochemical properties when compared to the single $TiO_2$ nanowires and $TiO_2$ nanoparticles (P25, Degussa). Therefore, the results indicate that the introduction of Ag nanophases within the electrospun $TiO_2$ nanowires could be improved the capacitance and cycleability of electrodes in Li-ion batteries.

우리는 전기방사법을 이용하여 $TiO_2$-Ag 복합 나노선 전극을 성공적으로 합성 하였으며 그들의 전기화학적 특성 및 구조 사이의 관계를 주사전자현미경(FESEM), 투과전자현미경(TEM), X-선 회절(XRD), X-선 광전자 분광법(XPS) 및 cycler에 의하여 규명하였다. 특히 $TiO_2$-Ag 복합 나노선 전극의 전기화학 특성은 순수한 $TiO_2$ 나노선 전극 및 나노입자(P25, Degussa)와 비교하였을 때 우수한 전기화학적 결과를 얻었다. 따라서 $TiO_2$ 나노선 전극 안에 Ag nanophases의 도입은 리튬이온 배터리를 위한 나노선 전극의 수명 및 용량을 향상 시킬 수 있다.

Keywords

References

  1. M. Winter and R. J. Brodd, "What are Batteries, Fue cells and Supercapacitors?", Chem. Rev., 104, 4245 (2004). https://doi.org/10.1021/cr020730k
  2. B. Scrosati and J. Garche, "Lithium batteries: Status, prospects and future", J. Power Sources, 195, 2419 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  3. J. O. Besenhard, "Handbook of Battery Materials", WILEYVCH, pp.17 (1999).
  4. A. Fujishima, K. Hashimoto and T. Watanabe, "$TiO_2$ Photocatalysis: Fundamentals and Applications", BKC, Tokyo (1999).
  5. T. H. Cho and S. J. Park, "A synthesis of spherical shape $TiO_2$-$SiO_2$ complex via solvothermal process and thermal properties at non-isothermal", J. Microelectron. Packag. Soc., 12(2), 141 (2005).
  6. H. C. Choi, H.-J. Ahn, Y. M. Jung, M. K. Lee, H. J. Shin, S. B. Kim and Y.-E. Sung, "Characterization of the structures of size-selected$TiO_2$nanoparticles using X-ray absorption spectroscopy", Appl. Spectrosc., 58(5), 598 (2004). https://doi.org/10.1366/000370204774103435
  7. L. Kavan, M. Kalbac, M. Zukalova, I. Exnar, V. Lorenzen, R. Nesper and M. Graetzel, "Lithium storage in nanostructured $TiO_2$ made by hydrothermal growth", Chem. Mater., 16, 477 (2004). https://doi.org/10.1021/cm035046g
  8. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. V. Schalkwijk, "Nanostructured materials for energy conversion and storage devices", Nat. Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  9. G. Armstrong, A. R. Armstrong, P. G. Bruce, P. Reale and B. Scrosati, "$TiO_2$(B) nanowires as an improved anode material for lithium-ion batteries containing $LiFePO_4$ or $LiNi_{0.5}Mn_{1.5}O_4$ cathodes and a polymer electrolyte", Adv. Mater., 18, 2597 (2006). https://doi.org/10.1002/adma.200601232
  10. M. G. Choi, Y.-G. Lee, S.-W. Song and K. M. Kim, "Lithiumion battery anode properties of $ TiO_2 $ nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles", Electrochemica Acta, 55, 5975 (2010). https://doi.org/10.1016/j.electacta.2010.05.052
  11. D. V. Bavykin, J. M. Friedrich and F. C. Walsh, "Protonated titanates and $ TiO_2 $ nanostructured materials: synthesis, properties, and Applications", Adv. Mater., 18, 2807 (2006). https://doi.org/10.1002/adma.200502696
  12. G. H. An, S.-Y. Jeong, T.-Y. Seong and H.-Y. Ahn, "One-pot fabrication of hollow $ SiO_2 $ nanowires via an electrospinning technique", Mater. Letters, 65, 2377 (2011). https://doi.org/10.1016/j.matlet.2011.05.043
  13. J. S. Kim and W. Y. Yoon, "The effect of surface-modified carbon anode on the electrochemical performance in Li-ion battery", J. Microelectron. Packag. Soc., 8(2), 25 (2001).
  14. S.-Q. Sun, B. Sun, W. Zhang and D. Wang, "Preparation and antibacterial activity of Ag-$TiO_2$composite film by liquid phase deposition (LPD) method", Bull. Mater. Sci., 31, pp.61- 66 (2008). https://doi.org/10.1007/s12034-008-0011-7
  15. A. V. Rupa, D. Manikandan, D. Divakar and T. Sivakumar, "Effect of deposition of Ag on $TiO_2$ nanoparticles on the photodegradation of reactive Yellow-17", J. Hazard. Mater., 147, 906 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.107
  16. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy", Physical Electronics, Eden Pairie, MN (1995).
  17. G. G. Wallace, J. Chen, A. J. Mozer, M. Forsyth, D. R. Mac- Farlane and C. Wang, "Nanoelectrodes: energy conversion and storage", Mater. Today, 12(6), 20 (2009). https://doi.org/10.1016/S1369-7021(09)70177-4
  18. Q. Wang, Z. Wen and J. Li, "Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional $TiO_2$ nanoparticles", Inorg. Chem., 45, 6944 (2006). https://doi.org/10.1021/ic060477x

Cited by

  1. 패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법 vol.27, pp.4, 2011, https://doi.org/10.6117/kmeps.2020.27.4.083