Introduction to Thermoacoustic Models for Combustion Instability Prediction Using Flame Transfer Function

화염 전달 함수를 이용한 열음향 연소 불안정 해석 모델 소개

  • 김대식 (강릉원주대학교 기계자동차공학부)
  • Received : 2011.07.13
  • Accepted : 2011.10.27
  • Published : 2011.12.30

Abstract

This paper reviews the state-of-the-art thermoacoustic(TA) modeling techniques and research trend to predict major parameters determining combustion instabilities in lean premixed gas turbine combustors. Linear TA modeling results give us an information on eigenfrequencies and initial growth rate of the instabilities. For the prediction, linear relation equation between acoustic waves and heat release oscillations should be derived in the determined system. Key information for this analysis is to determine the heat release fluctuations in the combustor, which is typically obtained by using n-${\tau}$ function from flame transfer function measurements and/or predictions. Great advancement in the linear TA modeling has been made over a couple of decades, and some successful prediction results have been reported in actual gas turbine combustors. However nonlinear TA model developments which are required to analyze nonlinear system behaviors such as limit cycle saturation and transition phenomena are still limited in a very simple system. In order to fully understand combustion instabilities in a complicated real system, nonlinear flame dynamics and acoustic wave interaction with nonlinear system boundary conditions should be explained from the nonlinear TA model developments.

본 논문에서는 많은 가스터빈 산업체 및 연구기관에서 연소불안정 현상과 관련된 변수들을 예측하기 위해 가장 보편적으로 이루어지고 있는 열음향 해석 모델에 대한 기술 소개 및 최근의 연구 동향을 분석하였다. 선형 시스템 해석을 통하여 연소 불안정이 발생하는 고유 주파수 및 불안정 초기 성장률의 예측이 가능하다. 이를 위하여 정의된 시스템에서의 음향파와 열발생율 섭동간의 선형 관계식을 선형 음향 이론으로부터 유도할 수 있고, 이 관계식의 해를 구하기 위해서 가장 중요한 부분은 화염 전달 함수로부터 n-${\tau}$ 함수를 구하여 열발생율 섭동 결과에 대한 정보를 얻는 것이다. 현재까지의 연구 결과로부터 선형 특성 해석에는 상당한 진보가 이루어져 왔고, 실제 가스터빈 연소기에 적용하는 노력이 있었으나, 한계 진폭과 과도기 현상 예측을 위해서 요구되는 비선형 동적 특성 모델링 기술 개발은 현재 간단한 연소기와 버너의 적용에 머물러 있는 실정이다. 실제 복잡한 가스터빈과 같은 연소 시스템에 적용되기 위해서는 비선형 경계 조건을 고려한 시스템 동적 특성 연구와 화염의 비선형 거동을 더욱 정확히 설명할 수 있는 전달 함수에 대한 예측 기술이 선행되어야 한다.

Keywords

References

  1. Lieuwen, T., and Yang, V., "Combustion instabilities in gas turbine engines," AIAA, Washington, 2005
  2. 오정석, 윤영빈, "가스터빈에서의 연소불안정 현상," 한국추진공학회지, 제12권, 제4호, 2008, pp.63-77
  3. Preetham, T., "Modeling the response of premixed flames to flow disturbances," Ph.D. thesis, Georgia Institute of Technology, 2007
  4. 김대식, "희박 예혼합 가스터빈 연소기에서의 화염 전달 함수 소개," 대한기계학회논문 집 B권, 제9호, 2011, pp.975-979
  5. Lieuwen, T., "Introduction: Combustion dynamics in lean-premixed prevaporized (LPP) gas turbines," Journal of Propulsion and Power, Vol. 19, No. 5, 2003, pp.721 https://doi.org/10.2514/2.6171
  6. Truffin, K., Poinsot, T., "Comparison and extension of methods for acoustic identification of burners," Combustion and Flame, Vol. 142, No. 4, 2005, pp.388-400 https://doi.org/10.1016/j.combustflame.2005.04.001
  7. Lieuwen, T., "Modeling premixed combustion-acoustic wave interactions: a review," Journal of Propulsion and Power, Vol. 19, No. 5, 2003, pp.765-781 https://doi.org/10.2514/2.6193
  8. Schuller, T., Tran, N., Noiray, N., and Durox, D., "The role of nonlinear acoustic boundary conditions in combustion/acoustic coupled instabilities," ASME paper, GT2009-59390, 2009
  9. Kim, D., Lee, J., Santavicca, A., Kim, K., and Srinivasan, S., "Effect of flame structure on the flame transfer function in a premixed gas turbine combustor," Journal of Engineering for Gas Turbine and Power, Vol. 132, No. 2, 2010, pp.021502.1-021502.7
  10. Schuller, T., Durox, D., and Candel, S., "A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V-flame dynamics," Combustion and Flame, Vol. 134, No. 1, 2003, pp.21-34 https://doi.org/10.1016/S0010-2180(03)00042-7
  11. Kim, K., "Forced response of swirl stabilized flames in hydrogen enriched gas turbines," Ph.D. Dissertation, Pennsylvania State University, 2009
  12. Kim, K., Lee, J., Quay, B., and Santavicca, D., "Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors," Combustion and Flame, Vol. 157, No. 9, 2010, pp.1718-1730 https://doi.org/10.1016/j.combustflame.2010.04.016
  13. Noiray, N., Durox, D., Schuller, T., and Candel, S., "A unified framework for nonlinear combustion instability analysis based on the flame describing function," Journal of Fluid Mechanics, Vol. 615, 2008, pp.139-167 https://doi.org/10.1017/S0022112008003613
  14. Yu, Y. C., Sisco, J. C., Sankaran, V., and Anderson, W. E., "Effects of mean flow, entropy waves, and boundary conditions on longitudinal combustion instability," Combustion Science and Technology, Vol. 182, No. 7, 2010, pp.739-776 https://doi.org/10.1080/00102200903566449
  15. Pankiewitz, C., and Sattelmayer, T., "Time domain simulation of combustion instabilities in annular combustors," Journal of Engineering for Gas Turbine and Power, Vol. 125, No. 3, 2003, pp.677-685 https://doi.org/10.1115/1.1582496
  16. Pieringer, J., and Sattelmayer, T., "Simulation of Combustion Instabilities in Liquid Rocket Engines with Acoustic Perturbation Equations," Journal of Propulsion and Power, Vol. 25, No. 5, 2009, pp.1020-1031 https://doi.org/10.2514/1.38782
  17. 김성구, 최환석, 차동진, "연소시스템의 열음향 불안정 예측을 위한 Helmholtz Solver 개발," 한국항공우주학회지, 제38권, 제5호, 2010, pp.445-455
  18. Noiray, N., Durox, D., Schuller, T., and Candel, S., "Self-induced instabilities of premixed flames in a multiple injection configuration," Combustion and Flame, Vol. 145, No. 3, 2006, pp.435-446 https://doi.org/10.1016/j.combustflame.2006.01.006
  19. Fleifil, M., Annaswamy, A., Ghoneim, G., and Ghoniem. A., "Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results," Combustion and Flame, Vol. 106, No. 4, 1996, pp.487-510 https://doi.org/10.1016/0010-2180(96)00049-1