DOI QR코드

DOI QR Code

Oxidative modification of ferritin induced by hydrogen peroxide

  • Received : 2010.12.08
  • Accepted : 2010.12.26
  • Published : 2011.03.31

Abstract

Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. In this study, we assessed the modification of ferritin induced by $H_2O_2$. When ferritin was incubated with $H_2O_2$, the degradation of ferritin L-chain increased with the $H_2O_2$ concentration whereas ferritin H-chain was remained. Free radical scavengers, azide, thiourea, and N-acetyl-$_L$-cysteine suppressed the $H_2O_2$-mediated ferritin modification. The iron specific chelator, deferoxamine, effectively prevented $H_2O_2$-mediated ferritin degradation in modified ferritin. The release of iron ions from ferritin was increased in $H_2O_2$ concentration-dependent manner. The present results suggest that free radicals may play a role in the modification and iron releasing of ferritin by $H_2O_2$. It is assumed that oxidative damage of ferritin by $H_2O_2$ may induce the increase of iron content in cells and subsequently lead to the deleterious condition.

Keywords

References

  1. Knovich, M. A., Storey, J. A., Coffman, L. G., Torti, S. V.and Torti, F. M. (2009) Ferritin for the clinician. BloodRev. 23, 95-104. https://doi.org/10.1016/j.blre.2008.08.001
  2. Halliwell, B. and Gutteridge, J. M. C. (2007) Free Radicalsin Biology and Medicine (Fourth Edition), Oxford UniversityPress, London, UK.
  3. Galkina, E. and Ley, K. (2009) Immune and inflammatorymechanisms of atherosclerosis. Annu. Rev. Immunol. 27, 165-197. https://doi.org/10.1146/annurev.immunol.021908.132620
  4. Maynarol, S., Schurman, S. H., Harboe, C., de Souta-Pinto, N. C. and Bohr, V. A. (2009) Base excision repair ofoxidative DNA damage and association with cancer andaging. Carcinogenesis 30, 2-10.
  5. Pflueger, A., Avramowitt, D. and Calvin, A. D. (2009) Roleof oxidative stress in contrast-induced acute kidney injuryin diabetes mellitus. Med. Sci. Monit. 15, 125-136.
  6. Galaris, D. and Pantopoulos, K. (2008) Oxidative stressand iron homeostasis: mechanistic and health aspects.Crit. Rev. Clin. Lab. Sci. 45, 1-23. https://doi.org/10.1080/10408360701713104
  7. Torti, F. M. and Torti, S. V. (2002) Regulation of ferritingenes and protein. Blood 99, 3505-3516. https://doi.org/10.1182/blood.V99.10.3505
  8. Thomas, M. and Jankovic, J. (2004) Neurodegenerativedisease and iron storage in the brain. Curr. Opin. Neurol.17, 437-442. https://doi.org/10.1097/01.wco.0000137534.61244.d1
  9. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R. andCrichton, R. R. (2004) Iron, brain ageing and neurodegenerativedisorders. Nat. Rev. Neurosci. 5, 863-873. https://doi.org/10.1038/nrn1537
  10. Wallis, L. I., Paley, M. N., Graham, J. M., Grunewald, P.A., Wignall, E. L., Joy, H. M. and Griffiths, P. D. (2008)MRI assessment of basal ganglia iron deposition inParkinson’s disease. J. Magn. Reson Imaging 28, 1061-1067. https://doi.org/10.1002/jmri.21563
  11. Double, K. L., Maywald, M., Schmittel, M., Riederer, P.and Gerlach, M. (1998) In vitro studies of ferritin iron releaseand neurotoxicity. J. Neurochem. 70, 2492-2499.
  12. Schuessler, H. and Schilling, K. (1984) Oxygen effect inthe radiolysis of proteins. Part 2. Bovine serum albumin.Int. J. Radiat. Biol. 45, 267-281. https://doi.org/10.1080/09553008414550381
  13. Hunt, J. V. and Dean, R. T. (1989) Free radical-mediateddegradation of proteins: the protective and deleterious effectsof membranes. Biochem. Biophys. Res. Commun.162, 1076-1084. https://doi.org/10.1016/0006-291X(89)90783-3
  14. Stadtman, E. R. and Berlett, B. S. (1997) Reactive oxygen-mediated protein oxidation in aging and disease.Chem. Res. Toxicol. 10, 485-494. https://doi.org/10.1021/tx960133r
  15. Robello, E., Galatro, A. and Puntarulo, S. (2009) Labileiron pool and ferritin content in developing rat brain gamma-irradiated in utero. Neurotoxicology 30, 430-435. https://doi.org/10.1016/j.neuro.2009.02.008
  16. Kim, K. S., Choi, S. Y., Kwon, H. Y., Won, M. H., Kang, T.C. and Kang, J. H. (2002) Aggregation of ${\alpha}-synuclein$ inducedby the Cu,Zn-superoxide dismutase and hydrogenperoxide system. Free Radic. Biol. Med. 32, 544-550. https://doi.org/10.1016/S0891-5849(02)00741-4
  17. Kang, J. H. (2009) Ferritin enhances salsolinol-mediatedDNA strand braekage: protection by carnosine and relatedcompounds. Toxicol. Lett. 188, 20-25. https://doi.org/10.1016/j.toxlet.2009.02.011
  18. Davies, K. J., Delsignore, M. E. and Lin, S. W. (1987)Protein damage and degradation by oxygen radicals. II.Modification of amino acids. J. Biol. Chem. 262, 9902-9907.
  19. Kang, J. H, Kim, K. S, Choi, S. Y., Kwon, H. Y. and Won,M. H. (2001) Oxidative modification of human ceruloplasminby peroxyl radicals. Biochem. Biophys. Acta1568, 30-36. https://doi.org/10.1016/S0304-4165(01)00198-2
  20. Granier, T., Langlois d’Estaintot, B., Gallois, B., Chevalier,J. M., Precigoux, G., Santambrogio, P. and Arosio, P.(2003) Structural description of the active sites of mouseL-chain ferritin at 1.2 A resolution. J. Biol. Inorg. Chem. 8.105-111. https://doi.org/10.1007/s00775-002-0389-4
  21. Flaherty, J. T. and Weisfeldt, M. L. (1988) Reperfusioninjury. Free Radic. Biol. Med. 5, 409-419. https://doi.org/10.1016/0891-5849(88)90115-3
  22. Zweier, J. L., Kuppusamy, P., Williams, R., Rayburn, B. K.,Smith, D., Weisfeldt, M. L. and Flaherty, J. T. (1989) Measurementand characterization of postischemic free radicalgeneration in the isolated perfused heart. J. Biol. Chem.264, 18890-18895.
  23. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K.,Gartner, F. H., Provenzano, M. D., Fujimoto, E. K.,Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985)Measurement of protein using bicinchoninic acid. Anal.Biochem. 150, 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  24. Laemmli, U. K. (1970) Cleavage of structural proteins duringthe assembly of the head of bacteriophage $T_4$. Nature227, 680-685. https://doi.org/10.1038/227680a0
  25. Pieroni, L., Khalil, L., Charlotte, F., Poynard, T., Piton, A.,Hainque, B. and Imbert-Bismut, F. (2001) Comparison ofbathophenanthroline sulfonate and ferene as chromogensin colorimetric measurement of low hepatic iron concentration.Clin. Chem. 47, 2059-2061.
  26. Hugli, T, E. and Moore, S. (1972) Determination of thetryptophan content of proteins by ion exchange chromatographyof alkaline hydrolysates. J. Biol. Chem. 247,2828-2834.

Cited by

  1. Casein glycomacropeptide hydrolysate exerts cytoprotection against H2O2-induced oxidative stress in RAW 264.7 macrophages via ROS-dependent heme oxygenase-1 expression vol.5, pp.6, 2015, https://doi.org/10.1039/C4RA10034D
  2. Using environmental proteomics to assess pollutant response of Carcinus maenas along the Tunisian coast vol.541, 2016, https://doi.org/10.1016/j.scitotenv.2015.09.032
  3. Redox proteomics as biomarker for assessing the biological effects of contaminants in crayfish from Doñana National Park vol.490, 2014, https://doi.org/10.1016/j.scitotenv.2014.04.117
  4. Fenobam promoted the neuroprotective effect of PEP-1-FK506BP following oxidative stress by increasing its transduction efficiency vol.46, pp.11, 2013, https://doi.org/10.5483/BMBRep.2013.46.11.080
  5. Serum Ferritin Is Differentially Associated with Anti-oxidative Status and Insulin Resistance in Healthy Obese and Non-obese Women vol.33, pp.4, 2012, https://doi.org/10.4082/kjfm.2012.33.4.205
  6. Are Reactive Oxygen Species Always Detrimental to Pathogens? vol.20, pp.6, 2014, https://doi.org/10.1089/ars.2013.5447
  7. ROS production in phagocytes: why, when, and where? vol.94, pp.4, 2013, https://doi.org/10.1189/jlb.1012544
  8. Serum ferritin level as an early indicator of metabolic dysregulation in young obese adults — a cross-sectional study vol.96, pp.12, 2018, https://doi.org/10.1139/cjpp-2018-0433
  9. Reduce, Induce, Thrive: Bacterial Redox Sensing during Pathogenesis vol.200, pp.17, 2018, https://doi.org/10.1128/JB.00128-18
  10. On the mechanism of the electrophysiological changes and membrane lesions induced by asbestos fiber exposure in Xenopus laevis oocytes vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-38591-x