DOI QR코드

DOI QR Code

The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives

  • Ramos, Ana A. (Centre of Marine Sciences, University of Algarve) ;
  • Polle, Jurgen (Brooklyn College, The City University of New York Brooklyn) ;
  • Tran, Duc (Brooklyn College, The City University of New York Brooklyn) ;
  • Cushman, John C. (Department of Biochemistry and Molecular Biology, University of Nevada) ;
  • Jin, Eon-Seon (Department of Life Science, Hanyang University) ;
  • Varela, Joao C. (Centre of Marine Sciences, University of Algarve)
  • Received : 2011.01.08
  • Accepted : 2011.02.10
  • Published : 2011.03.15

Abstract

The physiology of the unicellular green alga Dunaliella salina in response to abiotic stress has been studied for several decades. Early D. salina research focused on its remarkable salinity tolerance and ability, upon exposure to various abiotic stresses, to accumulate high concentrations of $\beta$-carotene and other carotenoid pigments valued highly as nutraceuticals. The simple life cycle and growth requirements of D. salina make this organism one of the large-scale commercially exploited microalgae for natural carotenoids. Recent advances in genomics and proteomics now allow investigation of abiotic stress responses at the molecular level. Detailed knowledge of isoprenoid biosynthesis mechanisms and the development of molecular tools and techniques for D. salina will allow the improvement of physiological characteristics of algal strains and the use of transgenic algae in bioreactors. Here we review D. salina isoprenoid and carotenoid biosynthesis regulation, and also the biotechnological and genetic transformation procedures developed for this alga that set the stage for its future use as a production system.

Keywords

References

  1. Aarts, M. G. M. & Fiers, M. W. E. J. 2003. What drives plant stress genes? Trends Plant Sci. 8:99-102. https://doi.org/10.1016/S1360-1385(03)00006-2
  2. Abd El-Baky, H. H., El-Baz, F. K. & El-Baroty, G. S. 2004. Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina. Biotechnology 3:102-108. https://doi.org/10.3923/biotech.2004.102.108
  3. Ahmed, A. M. & Zidan, M. A. 1987. Glycerol production by Dunaliella bioculata. J. Basic Microbiol. 27:419-425. https://doi.org/10.1002/jobm.3620270804
  4. Alkayal, F., Albion, R. L., Tillett, R. L., Hathwaik, L. T., Lemos, M. S. & Cushman, J. C. 2010. Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. Plant Sci. 179:437-449. https://doi.org/10.1016/j.plantsci.2010.07.001
  5. Amtmann, A. 2009. Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol. Plant 2:3-12. https://doi.org/10.1093/mp/ssn094
  6. Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., Zhou, S., Allen, A. E., Apt, K. E., Bechner, M., Brzezinski, M. A., Chaal, B. K., Chiovitti, A., Davis, A. K., Demarest, M. S., Detter, J. C., Glavina, T., Goodstein, D., Hadi, M. Z., Hellsten, U., Hildebrand, M., Jenkins, B. D., Jurka, J., Kapitonov, V. V., Kröger, N., Lau, W. W. Y., Lane, T. W., Larimer, F. W., Lippmeier, J. C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M. S., Palenik, B., Pazour, G. J., Richardson, P. M., Rynearson, T. A., Saito, M. A., Schwartz, D. C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F. P. & Rokhsar, D. S. 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79-86. https://doi.org/10.1126/science.1101156
  7. Avron, M. 1986. The osmotic components of halotolerant algae. Trends Biochem. Sci. 11:5-6. https://doi.org/10.1016/0968-0004(86)90218-5
  8. Avron, M. & Ben-Amotz, A. 1992. Dunaliella: physiology, biochemistry, and biotechnology. CRC Press, Boca Raton, FL, 256 pp.
  9. Bach, T. J., Boronat, A., Campos, N., Ferrer, A. & Vollack, K. U. 1999. Mevalonate biosynthesis in plants. Crit. Rev. Biochem. Mol. Biol. 34:107-122. https://doi.org/10.1080/10409239991209237
  10. Baisakh, N., Subudhi, P. K. & Varadwaj, P. 2008. Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct. Integr. Genomics 8:287-300. https://doi.org/10.1007/s10142-008-0075-x
  11. Bartley, G. E., Scolnik, P. A. & Giuliano, G. 1994. Molecular biology of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:287-301. https://doi.org/10.1146/annurev.pp.45.060194.001443
  12. Ben-Amotz, A. & Avron, M. 1973. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51:875-878. https://doi.org/10.1104/pp.51.5.875
  13. Ben-Amotz, A. & Avron, M. 1983. On the factors which determine massive $\beta$-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol. 72:593-597. https://doi.org/10.1104/pp.72.3.593
  14. Ben-Amotz, A. & Avron, M. 1990. The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol. 8:121-126. https://doi.org/10.1016/0167-7799(90)90152-N
  15. Ben-Amotz, A., Katz, A. & Avron, M. 1982. Accumulation of $\beta$-carotene in halotolerant algae: purification and characterization of $\beta$-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol.18:529-537. https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
  16. Ben-Amotz, A. & Shaish, A. 1992. $\beta$-carotene biosynthesis. In Avron, M. & Ben-Amotz, A. (Eds.) Dunaliella: Physiology, Biochemistry and Biotechnology. CRC Press, Boca Raton, FL, pp. 206-216.
  17. Bhosale, P. 2004. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 63:351-361. https://doi.org/10.1007/s00253-003-1441-1
  18. Bick, J. A. & Lange, B. M. 2003. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 415:146-154. https://doi.org/10.1016/S0003-9861(03)00233-9
  19. Borowitzka, L. J. & Brown, A. D. 1974. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella: the role of glycerol as a compatible solute. Arch. Microbiol. 96:37-52. https://doi.org/10.1007/BF00590161
  20. Borowitzka, M. A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70:313-321. https://doi.org/10.1016/S0168-1656(99)00083-8
  21. Borowitzka, M. A. & Borowitzka, L. J. 1988. Dunaliella. In Borowitzka, M. A. & Borowitzka, L. J. (Eds.) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp. 27-58.
  22. Borowitzka, M. A., Borowitzka, L. J. & Kessly, D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2:111-119. https://doi.org/10.1007/BF00023372
  23. Borowitzka, M. A. & Siva, C. J. 2007. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol. 19:567-590. https://doi.org/10.1007/s10811-007-9171-x
  24. Botella-Pavia, P., Besumbes, O., Phillips, M. A., Carretero-Paulet, L., Boronat, A. & Rodriguez-Concepcion, M. 2004. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J. 40:188-199. https://doi.org/10.1111/j.1365-313X.2004.02198.x
  25. Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant. 108:111-117. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  26. Bouvier, F., d’Harlingue, A., Suire, C., Backhaus, R. A. & Camara, B. 1998. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol. 117:1423-1431. https://doi.org/10.1104/pp.117.4.1423
  27. Bouvier, F., Rahier, A. & Camara, B. 2005. Biogenesis, molecular regulation and function of plant isoprenoids. Prog. Lipid Res. 44:357-429. https://doi.org/10.1016/j.plipres.2005.09.003
  28. Capa-Robles, W., Paniagua-Michel, J. & Soto, J. O. 2009. The biosynthesis and accumulation of $\beta$-carotene in Dunaliella salina proceed via the glyceraldehyde 3-phosphate/pyruvate pathway. Nat. Prod. Res. 23:1021-1028. https://doi.org/10.1080/14786410802689689
  29. Chapin, F. S. III. 1991. Integrated responses of plants to stress. BioScience 41:29-36. https://doi.org/10.2307/1311538
  30. Chappell, J. 1995. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:521-547. https://doi.org/10.1146/annurev.pp.46.060195.002513
  31. Chen, H. & Jiang, J. -G. 2009. Osmotic responses of Dunaliella to the changes of salinity. J. Cell Physiol. 219:251-258. https://doi.org/10.1002/jcp.21715
  32. Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26:126-131. https://doi.org/10.1016/j.tibtech.2007.12.002
  33. Chitlaru, E. & Pick, U. 1991. Regulation of glycerol synthesis in response to osmotic changes in Dunaliella. Plant Physiol. 96:50-60. https://doi.org/10.1104/pp.96.1.50
  34. Cho, S. H. & Thompson, G. A. Jr. 1986. Properties of a fatty acid hydrolase preferentially attacking monogalactosyldiacylglycerols in Dunaliella salina chloroplasts. Biochim. Biophys. Acta 878:353-359. https://doi.org/10.1016/0005-2760(86)90243-2
  35. Cifuentes, A. S., González, M. A., Inostroza, I. & Aguilera, A. 2001. Reappraisal of physiological attributes of nine strains of Dunaliella (Chlorophyceae): growth and pigment content across salinity gradient. J. Phycol. 37:334-344. https://doi.org/10.1046/j.1529-8817.2001.037002334.x
  36. Cifuentes, A. S., González, M. A. & Parra, O. O. 1996. The effect of salinity on the growth and carotenogenesis in two Chilean strains of Dunaliella salina Teodoresco. Biol. Res. 29:227-236.
  37. Coesel, S. N., Baumgartner, A. C., Teles, L. M., Ramos, A. A.,Henriques, N. M., Cancela, L. & Varela, J. C. S. 2008. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar. Biotechnol. 10:602-611. https://doi.org/10.1007/s10126-008-9100-2
  38. Coll, J. M. 2006. Methodologies for transferring DNA into eukaryotic microalgae. Span. J. Agric. Res. 4:316-330. https://doi.org/10.5424/sjar/2006044-209
  39. Cowan, A. K., Rose, P. D. & Horne, L. G. 1992. Dunaliella salina: a model system for studying the response of plant cells to stress. J. Exp. Bot. 43:1535-1547.
  40. Cunningham, F. X. Jr. 2002. Regulation of carotenoid synthesis and accumulation in plants. Pure Appl. Chem. 74:1409-1417. https://doi.org/10.1351/pac200274081409
  41. Cunningham, F. X. Jr. & Gantt, E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:557-583. https://doi.org/10.1146/annurev.arplant.49.1.557
  42. Cushman, J. C. & Bohnert, H. J. 2000. Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3:117-124. https://doi.org/10.1016/S1369-5266(99)00052-7
  43. Cushman, J. C., Tillett, R. L., Wood, J. A., Branco, J. M. & Schlauch, K. A. 2008. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing $C_3$ photosynthesis and Crassulacean acid metabolism (CAM). J. Exp. Bot. 59:1875-1894. https://doi.org/10.1093/jxb/ern008
  44. Del Campo, J. A., Garcia-Gonzalez, M. & Guerrero, M. G. 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotechnol. 74:1163-1174. https://doi.org/10.1007/s00253-007-0844-9
  45. Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W. & Gershenzon, J. 2005. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. U. S. A. 102:933-938. https://doi.org/10.1073/pnas.0407360102
  46. Dunahay, T. G., Jarvis, E. E., Dais, S. S. & Roessler, P. G. 1996. Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotechnol. 57/58:223-231.
  47. Eisenreich, W., Bacher, A., Arigoni, D. & Rohdich, F. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61:1401-1426.
  48. Eisenreich, W., Rohdich, F. & Bacher, A. 2001. Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6:78-84. https://doi.org/10.1016/S1360-1385(00)01812-4
  49. Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M. H. & Bacher, A. 1998. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5:R221-R233. https://doi.org/10.1016/S1074-5521(98)90002-3
  50. Estevez, J. M., Cantero, A., Reindl, A., Reichler, S. & Leon, P. 2001. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem. 276:22901-22909. https://doi.org/10.1074/jbc.M100854200
  51. Evans, R. W. & Kates, M. 1984. Lipid composition of halophilic species of Dunaliella from the Dead Sea. Arch. Microbiol. 140:50-56. https://doi.org/10.1007/BF00409771
  52. Evans, R. W., Kates, M., Ginzburg, M. & Ginzburg, B. -Z. 1982. Lipid composition of halotolerant algae, Dunaliella parva Lerche and Dunaliella tertiolecta. Biochim. Biophys. Acta 712:186-195. https://doi.org/10.1016/0005-2760(82)90101-1
  53. Feng, S., Xue, L., Liu, H. & Lu, P. 2009. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol. Biol. Rep. 36:1433-1439. https://doi.org/10.1007/s11033-008-9333-1
  54. Fisher, M., Gokhman, I., Pick, U. & Zamir, A. 1997. A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina grown in high salinities. J. Biol. Chem. 272:1565-1570. https://doi.org/10.1074/jbc.272.3.1565
  55. Fisher, M., Zamir, A. & Pick, U. 1998. Iron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferrin. J. Biol. Chem. 273:17553-17558. https://doi.org/10.1074/jbc.273.28.17553
  56. Fletcher, S. P., Muto, M. & Mayfield, S. P. 2007. Optimization of recombinant protein expression in the chloroplasts of green algae. Adv. Exp. Med. Biol. 616:90-98. https://doi.org/10.1007/978-0-387-75532-8_8
  57. Fuhrmann, M. 2002. Expanding the molecular toolkit for Chlamydomonas reinhardtii: from history to new frontiers. Protist 153:357-364. https://doi.org/10.1078/14344610260450082
  58. Geng, D., Wang, Y., Wang, P., Li, W. & Sun, Y. 2003. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J. Appl. Phycol. 15:451-456. https://doi.org/10.1023/B:JAPH.0000004298.89183.e5
  59. Geng, D. -G., Han, Y., Wang, Y. -Q., Wang, P., Zhang, L. -M., Li, W. -B. & Sun, Y. -R. 2004. Construction of a system for the stable expression of foreign genes in Dunaliella salina. Acta Bot. Sin. 46:342-346.
  60. Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E. & Melis, A. 2000. Microalgae: a green source of renewable $H_2$. Trends Biotechnol. 18:506-511. https://doi.org/10.1016/S0167-7799(00)01511-0
  61. Gomez, P. I. & Gonzalez, M. A. 2004. Genetic variation among seven strains of Dunaliella salina (Chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences. Aquaculture 233:149-162. https://doi.org/10.1016/j.aquaculture.2003.11.005
  62. Gonzalez, M. A., Coleman, A. W., Gomez, P. I. & Montoya, R. 2001. Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences. J. Phycol. 37:604-611. https://doi.org/10.1046/j.1529-8817.2001.037004604.x
  63. Gonzalez, M. A., Gomez, P. I. & Polle, J. E. W. 2009. Taxonomy and phylogeny of the Genus Dunaliella. In Ben-Amotz, A., Polle, J. E. W. & Subba Rao, D. V. (Eds.) The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology. Science Publishers, Einfield, NH, pp.15-44.
  64. Goyal, A. 2007. Osmoregulation in Dunaliella, Part I: Effects of osmotic stress on photosynthesis, dark respiration and glycerol metabolism in Dunaliella tertiolecta and its salt-sensitive mutant (HL 25/8). Plant Physiol. Biochem. 45:696-704. https://doi.org/10.1016/j.plaphy.2007.05.008
  65. Greenwell, H. C., Laurens, L. M. L., Shields, R. J., Lovitt, R. W. & Flynn, K. J. 2010. Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface 7:703-726. https://doi.org/10.1098/rsif.2009.0322
  66. Grossman, A. R., Croft, M., Gladyshev, V. N., Merchant, S. S., Posewitz, M. C., Prochnik, S. & Spalding, M. H. 2007. Novel metabolism in Chlamydomonas through the lens of genomics. Curr. Opin. Plant Biol. 10:190-198. https://doi.org/10.1016/j.pbi.2007.01.012
  67. Grossman, A. R., Harris, E. E., Hauser, C., Lefebvre, P. A., Martinez, D., Rokhsar, D., Shrager, J., Silflow, C. D., Stern, D., Vallon, O. & Zhang, Z. 2003. Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot. Cell 2:1137-1150. https://doi.org/10.1128/EC.2.6.1137-1150.2003
  68. Hallmann, A. 2007. Algal transgenics and biotechnology. Transgenic Plant J. 1:81-98.
  69. Hampel, D., Mosandl, A. & Wust, M. 2005. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66:305-311. https://doi.org/10.1016/j.phytochem.2004.12.010
  70. Harris, E. H. 2001. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:363-406. https://doi.org/10.1146/annurev.arplant.52.1.363
  71. Hejazi, M. A., Barzegari, A., Gharajeh, N. H. & Hejazi, M. S. 2010. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella. Saline Systems 6:4. https://doi.org/10.1186/1746-1448-6-4
  72. Hejazi, M. A. & Wijffels, R. H. 2004. Milking of microalgae. Trends Biotechnol. 22:189-194. https://doi.org/10.1016/j.tibtech.2004.02.009
  73. Hema, R., Senthil-Kumar, M., Shivakumar, S., Chandrasekhara Reddy, P. & Udayakumar, M. 2007. Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta 226:655-670. https://doi.org/10.1007/s00425-007-0514-2
  74. Hemmerlin, A., Hoeffler, J. -F., Meyer, O., Tritsch, D., Kagan, I. A., Grosdemange-Billiard, C., Rohmer, M. & Bach, T. J. 2003. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem. 278:26666-26676. https://doi.org/10.1074/jbc.M302526200
  75. Hicks, G. R., Hironaka, C. M., Dauvillee, D., Funke, R. P., D’Hulst, C., Waffenschmidt, S. & Ball, S. G. 2001. When simpler is better. Unicellular green algae for discovering new genes and functions in carbohydrate metabolism. Plant Physiol. 127:1334-1338. https://doi.org/10.1104/pp.010821
  76. Hirschberg, J., Cohen, M., Harker, M., Lotan, T., Mann, V. & Pecker, I. 1997. Molecular genetics of the carotenoid biosynthesis pathway in plants and algae. Pure Appl. Chem. 69:2151-2158. https://doi.org/10.1351/pac199769102151
  77. Hsieh, M. -H., Chang, C. -Y., Hsu, S. -J. & Chen, J. -J. 2008. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol. Biol. 66:663-673. https://doi.org/10.1007/s11103-008-9297-5
  78. Huesemann, M. H. & Benemann, J. R. 2009. Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. In Ben-Amotz, A., Polle, J. E. W. & Subba Rao, D. V. (Eds.) The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology. Science Publishers, Einfield, NH, pp. 445-474.
  79. Hunter, W. N. 2007. The non-mevalonate pathway of isoprenoid precursor biosynthesis. J. Biol. Chem. 282:21573-21577. https://doi.org/10.1074/jbc.R700005200
  80. Jain, M., Shrager, J., Harris, E. H., Halbrook, R., Grossman, A. R., Hauser, C. & Vallon, O. 2007. EST assembly supported by a draft genome sequence: an analysis of the Chlamydomonas reinhardtii transcriptome. Nucleic Acids Res. 35:2074-2083. https://doi.org/10.1093/nar/gkm081
  81. Jia, Y., Xue, L., Li, J. & Liu, H. 2010. Isolation and proteomic analysis of the halotolerant alga Dunaliella salina flagella using shotgun strategy. Mol. Biol. Rep. 37:711-716. https://doi.org/10.1007/s11033-009-9563-x
  82. Jiang, G. -Z., Lü, Y. -M., Niu, X. -L. & Xue, L. -X. 2005. The actin gene promoter-driven bar as a dominant selectable marker for nuclear transformation of Dunaliella salina. Acta Genet. Sin. 32:424-433.
  83. Jimenez, C. & Pick, U. 1993. Differential reactivity of $\beta$-carotene isomers from Dunaliella bardawil toward oxygen radicals. Plant Physiol. 101:385-390. https://doi.org/10.1104/pp.101.2.385
  84. Jimenez, C. & Pick, U. 1994. Differential stereoisomer composition of $\beta$, $\beta$-carotene in thylakoids and in pigment globules in Dunaliella. J. Plant Physiol. 143:257-263. https://doi.org/10.1016/S0176-1617(11)81628-7
  85. Jin, E. & Polle, J. E. W. 2009. Carotenoid biosynthesis in Dunaliella (Chlorophyta). In Ben-Amotz, A., Polle, J. E. W. & Subba Rao, D. V. (Eds.) The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology. Science Publishers, Einfield, NH, pp. 147-172.
  86. Jin, E., Polle, J. E. W. & Melis, A. 2001. Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina. Biochim. Biophys. Acta 1506:244-259. https://doi.org/10.1016/S0005-2728(01)00223-7
  87. Kasahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya, Y. & Yamaguchi, S. 2002. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J. Biol. Chem. 277:45188-45194. https://doi.org/10.1074/jbc.M208659200
  88. Katz, A., Jimenez, C. & Pick, U. 1995. Isolation and characterization of a protein associated with carotene globules in the alga Dunaliella bardawil. Plant Physiol. 108:1657-1664. https://doi.org/10.1104/pp.108.4.1657
  89. Katz, A., Waridel, P., Shevchenko, A. & Pick, U. 2007. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol. Cell. Proteomics 6:1459-1472. https://doi.org/10.1074/mcp.M700002-MCP200
  90. Kore-eda, S., Cushman, M. A., Akselrod, I., Bufford, D., Fredrickson, M., Clark, E. & Cushman, J. C. 2004. Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene 341:83-92. https://doi.org/10.1016/j.gene.2004.06.037
  91. Lamers, P. P., Janssen, M., De Vos, R. C. H., Bino, R. J. & Wijffels, R. H. 2008. Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol. 26:631-638. https://doi.org/10.1016/j.tibtech.2008.07.002
  92. Lamers, P. P., van de Laak, C. C. W., Kaasenbrood, P. S., Lorier, J., Janssen, M., De Vos, R. C. H., Bino, R. J. & Wijffels, R. H. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng. 106:638-648. https://doi.org/10.1002/bit.22725
  93. Laule, O., Fürholz, A., Chang, H. -S., Zhu, T., Wang, X., Heifetz, P. B., Gruissem, W. & Lange, M. 2003. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 100:6866-6871. https://doi.org/10.1073/pnas.1031755100
  94. Lefebvre, P. A. & Silflow, C. D. 1999. Chlamydomonas: the cell and its genomes. Genetics 151:9-14.
  95. Leon, R., Galvan, A. & Fernandez, E. 2007. Transgenic microalgae as green cell factories: advances in experimental medicine and biology. Springer-Verlag, New York, 125 pp.
  96. Leon-Banares, R., Gonzalez-Ballester, D., Galvan, A. & Fernandez, E. 2004. Transgenic microalgae as green cell-factories. Trends Biotechnol. 22:45-52. https://doi.org/10.1016/j.tibtech.2003.11.003
  97. Lers, A., Biener, Y. & Zamir, A. 1990. Photoinduction of massive $\beta$-carotene accumulation by the alga Dunaliella bardawil: kinetics and dependence on gene activation. Plant Physiol. 93:389-395. https://doi.org/10.1104/pp.93.2.389
  98. Li, F., Vallabhaneni, R. & Wurtzel, E. T. 2008a. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol. 146:1333-1345. https://doi.org/10.1104/pp.107.111120
  99. Li, F., Vallabhaneni, R., Yu, J., Rocheford, T. & Wurtzel, E. T. 2008b. The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol. 147:1334-1346. https://doi.org/10.1104/pp.108.122119
  100. Li, J., Xue, L., Yana, H., Wang, L., Liu, L., Lu, Y. & Xie, H. 2007. The nitrate reductase gene-switch: a system for regulated expression in transformed cells of Dunaliella salina. Gene 403:132-142. https://doi.org/10.1016/j.gene.2007.08.001
  101. Liang, C., Zhao, F., Wei, W., Wen, Z. & Qin, S. 2006. Carotenoid biosynthesis in cyanobacteria: structural and evolutionary scenarios based on comparative genomics. Int. J. Biol. Sci. 2:197-207.
  102. Lichtenthaler, H. K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:47-65. https://doi.org/10.1146/annurev.arplant.50.1.47
  103. Lichtenthaler, H. K. 2000. Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem. Soc. Trans. 28:785-789. https://doi.org/10.1042/BST0280785
  104. Lichtenthaler, H. K. 2010. The non-mevalonate DOXP/MEP (deoxyxylulose 5-phosphate/mehtylerythritol 4-phosphate) pathway of chloroplast isoprenoid and pigment biosynthesis. In Rebeiz, C. A., Benning, C., Bohnert, H. J., Daniell, H., Hoober, J. K., Lichtenthaler, H. K., Portis, A. R. & Tripathy, B. C. (Eds.) Advances in Photosynthesis and Respiration, Vol 31. The Chloroplasts: Basics and Applications. Springer, Dordrecht, pp. 95-118.
  105. Lichtenthaler, H. K., Schwender, J., Disch, A. & Rohmer, M. 1997. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Lett. 400:271-274. https://doi.org/10.1016/S0014-5793(96)01404-4
  106. Liska, A. J., Shevchenko, A., Pick, U. & Katz, A. 2004. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol. 136:2806-2817. https://doi.org/10.1104/pp.104.039438
  107. Loeblich, L. A. 1982. Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J. Mar. Biol. Assoc. U. K. 62:493-508.
  108. Lohr, M., Im, C. -S., & Grossman, A. R. 2005. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol. 138:490-515. https://doi.org/10.1104/pp.104.056069
  109. Lois, L. M., Rodriguez-Concepcion, M., Gallego, F., Campos, N. & Boronat, A. 2000. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J. 22:503-513. https://doi.org/10.1046/j.1365-313x.2000.00764.x
  110. Lu, Y. -M., Jiang, G. -Z., Niu, X. -L., Hou, G. -Q., Zhang, G. -X. & Xue, L. -X. 2004. Cloning and functional analyses of promoters of two carbonic anhydrase genes from Dunaliella salina. Acta Genet. Sin. 31:1157-1166.
  111. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. -J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. BioV.,Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage, K. B., Kim, J. -B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F. & Rothberg, J. M. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380. https://doi.org/10.1038/nature03959
  112. Mayfield, S. P., Manuell, A. L., Chen, S., Wu, J., Tran, M., Siefker, D., Muto, M. & Marin-Navarro, J. 2007. Chlamydomonas reinhardtii chloroplasts as protein factories. Curr. Opin. Biotechnol. 18:126-133. https://doi.org/10.1016/j.copbio.2007.02.001
  113. Mendoza, H., Martel, A., Jiménez del Río, M. & García Reina, G. 1999. Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. J. Appl. Phycol. 11:15-19. https://doi.org/10.1023/A:1008014332067
  114. Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., Marechal-Drouard, L., Marshall, W. F., Qu, L. -H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S. M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C. -L., Cognat, V., Croft, M. T., Dent, R., Dutcher, S., Fernandez, E., Fukuzawa, H., Gonzalez-Ballester, D., Gonzalez-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P. A., Lemaire, S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S. V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J. -P., Riano-Pachon, D. M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer, J., Balk, J., Bisova, K., Chen, C. -J., Elias, M., Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long, J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P., Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo, Y., Martinez, D., Ngau, W. C. A., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D. S. & Grossman, A. R. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245-250. https://doi.org/10.1126/science.1143609
  115. Metzger, P. & Largeau, C. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66:486-496. https://doi.org/10.1007/s00253-004-1779-z
  116. Miao, X. & Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97:841-846. https://doi.org/10.1016/j.biortech.2005.04.008
  117. Mishra, A., Mandoli, A. & Jha, B. 2008. Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan. J. Ind. Microbiol. Biotechnol. 35:1093-1101. https://doi.org/10.1007/s10295-008-0387-9
  118. Montsant, A., Allen, A. E., Coesel, S., De Martino, A., Falciatore, A., Mangogna, M., Siaut, M., Heijde, M., Jabbari, K., Maheswari, U., Rayko, E., Vardi, A., Apt, K. E., Berges, J. A., Chiovitti, A., Davis, A. K., Thamatrakoln, K., Hadi, M. Z., Lane, T. W., Lippmeier, J. C., Martinez, D., Parker, M. S., Pazour, G. J., Saito, M. A., Rokhsar, D. S., Armbrust, E. V. & Bowler, C. 2007. Identification and comparative genomic analysis of signaling and regulatory components in the diatom Thalassiosira pseudonana. J. Phycol. 43:585-604. https://doi.org/10.1111/j.1529-8817.2007.00342.x
  119. Murthy, K. N. C., Vanitha, A., Rajesha, J., Swamy, M. M., Sowmya, P. R. & Ravishankar, G. A. 2005. In vivo antioxidant activity of carotenoids from Dunaliella salina: a green microalga. Life Sci. 76:1381-1390. https://doi.org/10.1016/j.lfs.2004.10.015
  120. Olmos, J., Ochoa, L., Paniagua-Michel, J. & Contreras, R. 2009. DNA fingerprinting differentiation between $\beta$-carotene hyperproducer strains of Dunaliella from around the world. Saline Systems 5:5. https://doi.org/10.1186/1746-1448-5-5
  121. Olmos, J., Paniagua, J. & Contreras, R. 2000. Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Lett. Appl. Microbiol. 30:80-84. https://doi.org/10.1046/j.1472-765x.2000.00672.x
  122. Olmos-Soto, J., Paniagua-Michel, J., Contreras, R. & Trujillo, L. 2002. Molecular identification of β-carotene hyper-producing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotechnol. Lett. 24:365-369. https://doi.org/10.1023/A:1014516920887
  123. Oren, A. 2005. A hundred years of Dunaliella research: 1905-2005. Saline Systems 1:2. https://doi.org/10.1186/1746-1448-1-2
  124. Oren, A. 2010. Industrial and environmental applications of halophilic microorganisms. Environ. Technol. 31:825-834. https://doi.org/10.1080/09593330903370026
  125. Park, S., Polle, J. E. W., Melis, A., Lee, T. K. & Jin, E. 2006. Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina. Mar. Biotechnol. 8:120-128. https://doi.org/10.1007/s10126-005-5030-4
  126. Pick, U. 1998. Dunaliella: a model extremophilic alga. Israel J. Plant Sci. 46:131-139. https://doi.org/10.1080/07929978.1998.10676720
  127. Polle, J. E. W. & Song, Q. 2009. Development of genetics and molecular tool kits for species of the unicellular green alga Dunaliella (Chlorophyta). In Ben-Amotz, A., Polle, J. E. W. & Subba Rao, D. V. (Eds.) The Alga Dunaliella: Bio-diversity, Physiology, Genomics and Biotechnology. Science Publishers, Einfield, NH, pp. 403-422.
  128. Polle, J. E. W., Tran, D., & Ben-Amotz, A. 2009. History, distribution, and habitats of algae of the genus Dunaliella Teodoresco (Chlorophyceae). In Ben-Amotz, A., Polle, J. E. W. & Subba Rao, D. V. (Eds.) The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology. Science Publishers, Einfield, NH, pp. 1-14.
  129. Potvin, G. & Zhang, Z. 2010. Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol. Adv. 28:910-918. https://doi.org/10.1016/j.biotechadv.2010.08.006
  130. Pulz, O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57:287-293. https://doi.org/10.1007/s002530100702
  131. Pulz, O. & Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65:635-648. https://doi.org/10.1007/s00253-004-1647-x
  132. Rabbani, S., Beyer, P., Lintig, J. v., Hugueney, P. & Kleinig, H. 1998. Induced $\beta$-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol. 116:1239-1248. https://doi.org/10.1104/pp.116.4.1239
  133. Radakovits, R., Jinkerson, R. E., Darzins, A. & Posewitz, M. C. 2010. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 9:486-501. https://doi.org/10.1128/EC.00364-09
  134. Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S. & Rengasamy, R. 2008. A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34:77-88. https://doi.org/10.1080/10408410802086783
  135. Raja, R., Hemaiswarya, S. & Rengasamy, R. 2007a. Exploitation of Dunaliella for $\beta$-carotene production. Appl. Microbiol. Biotechnol. 74:517-523. https://doi.org/10.1007/s00253-006-0777-8
  136. Raja, R., Iswarya, S. H., Balasubramanyam, D. & Rengasamy, R. 2007b. PCR-identification of Dunaliella salina (Volvocales, Chlorophyta) and its growth characteristics. Microbiol. Res. 162:168-176. https://doi.org/10.1016/j.micres.2006.03.006
  137. Ramos, A., Coesel, S., Marques, A., Rodrigues, M., Baumgartner, A., Noronha, J., Rauter, A., Brenig, B. & Varela, J. 2008. Isolation and characterization of a stress-inducible Dunaliella salina Lcy-$\beta$ gene encoding a functional lycopene $\beta$-cyclase. Appl. Microbiol. Biotechnol. 79:819-828. https://doi.org/10.1007/s00253-008-1492-4
  138. Ramos, A. A., Marques, A. R., Rodrigues, M., Henriques, N., Baumgartner, A., Castilho, R., Brenig, B. & Varela, J. C. 2009. Molecular and functional characterization of a cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase from Dunaliella salina. J. Plant Physiol. 166:968-977. https://doi.org/10.1016/j.jplph.2008.11.008
  139. Rochaix, J. -D. 2002. Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Lett. 529:34-38. https://doi.org/10.1016/S0014-5793(02)03181-2
  140. Rochaix, J. -D. 2004. Genetics of the biogenesis and dynamics of the photosynthetic machinery in eukaryotes. Plant Cell 16:1650-1660. https://doi.org/10.1105/tpc.160770
  141. Rodriguez-Concepcion, M. 2006. Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem. Rev. 5:1-15. https://doi.org/10.1007/s11101-005-3130-4
  142. Rodriguez-Concepcion, M. 2010. Supply of precursors for carotenoid biosynthesis in plants. Arch. Biochem. Biophys. 504:118-122. https://doi.org/10.1016/j.abb.2010.06.016
  143. Rodriguez-Concepcion, M., Querol, J., Lois, L. M., Imperial, S. & Boronat, A. 2003. Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit. Planta 217:476-482. https://doi.org/10.1007/s00425-003-1008-5
  144. Rohdich, F., Kis, K., Bacher, A. & Eisenreich, W. 2001. The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr. Opin. Chem. Biol. 5:535-540. https://doi.org/10.1016/S1367-5931(00)00240-4
  145. Rohdich, F., Zepeck, F., Adam, P., Hecht, S., Kaiser, J., Laupitz, R., Grāwert, T., Amslinger, S., Eisenreich, W., Bacher, A. & Arigoni, D. 2003. The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc. Natl. Acad. Sci. U. S. A. 100:1586-1591. https://doi.org/10.1073/pnas.0337742100
  146. Rohmer, M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16:565-574. https://doi.org/10.1039/a709175c
  147. Rohmer, M. 2003. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis: elucidation and distribution. Pure Appl. Chem. 75:375-387. https://doi.org/10.1351/pac200375020375
  148. Rohmer, M., Knani, M., Simonin, P., Sutter, B. & Sahm, H. 1993. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295:517-524. https://doi.org/10.1042/bj2950517
  149. Romer, S. & Fraser, P. D. 2005. Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta 221:305-308. https://doi.org/10.1007/s00425-005-1533-5
  150. Rosenberg, J. N., Oyler, G. A., Wilkinson, L. & Betenbaugh, M. J. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19:430-436. https://doi.org/10.1016/j.copbio.2008.07.008
  151. Sacchettini, J. C. & Poulter, C. D. 1997. Creating isoprenoid diversity. Science 277:1788-1789. https://doi.org/10.1126/science.277.5333.1788
  152. Sadka, A., Lers, A., Zamir, A. & Avron, M. 1989. A critical examination of the role of de novo protein synthesis in the osmotic adaptation of the halotolerant alga Dunaliella. FEBS Lett. 244:93-98. https://doi.org/10.1016/0014-5793(89)81170-6
  153. Sanchez-Estudillo, L., Freile-Pelegrin, Y., Rivera-Madrid, R., Robledo, D. & Narvaez-Zapata, J. A. 2006. Regulation of two photosynthetic pigment-related genes during stress-induced pigment formation in the green alga, Dunaliella salina. Biotechnol. Lett. 28:787-791. https://doi.org/10.1007/s10529-006-9001-2
  154. Sandmann, G. 1994. Carotenoid biosynthesis in microorganisms and plants. Eur. J. Biochem. 223:7-24. https://doi.org/10.1111/j.1432-1033.1994.tb18961.x
  155. Sandmann, G. 2001. Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385:4-12. https://doi.org/10.1006/abbi.2000.2170
  156. Schwender, J., Gemunden, C. & Lichtenthaler, H. K. 2001. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416-423. https://doi.org/10.1007/s004250000409
  157. Schwender, J., Seemann, M., Lichtenthaler, H. K. & Rohmer, M. 1996. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem. J. 316:73-80. https://doi.org/10.1042/bj3160073
  158. Shaish, A., Avron, M., Pick, U. & Ben-Amotz, A. 1993. Are active oxygen species involved in induction of $\beta$-carotene in Dunaliella bardawil? Planta 190:363-368.
  159. Shaish, A., Ben-Amotz, A. & Avron, M. 1992. Biosynthesis of $\beta$-carotene in Dunaliella. Methods Enzymol. 213:439-444. https://doi.org/10.1016/0076-6879(92)13145-N
  160. Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. 1998. A look back at the U. S. Department of Energy’s Aquatic Species Program: biodiesel from algae. NREL/TP-580-24190. National Renewable Energy Laboratory, Golden, CO, 328 pp.
  161. Shrager, J., Hauser, C., Chang, C. -W., Harris, E. H., Davies, J., McDermott, J., Tamse, R., Zhang, Z. & Grossman, A. R. 2003. Chlamydomonas reinhardtii genome project: a guide to the generation and use of the cDNA information. Plant Physiol. 131:401-408. https://doi.org/10.1104/pp.016899
  162. Siaut, M., Heijde, M., Mangogna, M., Montsant, A., Coesel, S., Allen, A., Manfredonia, A., Falciatore, A. & Bowler, C. 2007. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406:23-35. https://doi.org/10.1016/j.gene.2007.05.022
  163. Smith, D. R., Lee, R. W., Cushman, J. C., Magnuson, J. K., Tran, D. & Polle, J. E. W. 2010. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol. 10:83. https://doi.org/10.1186/1471-2229-10-83
  164. Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96. https://doi.org/10.1263/jbb.101.87
  165. Stahl, W. & Sies, H. 2005. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta 1740:101-107. https://doi.org/10.1016/j.bbadis.2004.12.006
  166. Steinbrenner, J. & Sandmann, G. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol. 72:7477-7484. https://doi.org/10.1128/AEM.01461-06
  167. Sun, G., Zhang, X., Sui, Z. & Mao, Y. 2008. Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta). Mar. Biotechnol. 10:219-226. https://doi.org/10.1007/s10126-007-9056-7
  168. Sun, T. -H., Liu, C. -Q., Hui, Y. -Y., Wu, W. -K., Zhou, Z. -G. & Lu, S. 2010. Coordinated regulation of gene expression for carotenoid metabolism in Chlamydomonas reinhardtii. J. Integr. Plant Biol. 52:868-878. https://doi.org/10.1111/j.1744-7909.2010.00993.x
  169. Sun, Y., Gao, X., Li, Q., Zhang, Q. & Xu, Z. 2006. Functional complementation of a nitrate reductase defective mutant of a green alga Dunaliella viridis by introducing the nitrate reductase gene. Gene 377:140-149. https://doi.org/10.1016/j.gene.2006.03.018
  170. Sun, Y., Yang, Z., Gao, X., Li, Q., Zhang, Q. & Xu, Z. 2005. Expression of foreign genes in Dunaliella by electroporation. Mol. Biotechnol. 30:185-192. https://doi.org/10.1385/MB:30:3:185
  171. Taji, T., Komatsu, K., Katori, K., Kawasaki, Y., Sakata, Y., Tanaka, S., Kobayashi, M., Toyoda, A., Seki, M. & Shinozaki, K. 2010. Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis-related model halophyte, Thellungiella halophila. BMC Plant Biol. 10:261. https://doi.org/10.1186/1471-2229-10-261
  172. Tan, C., Qin, S., Zhang, Q., Jiang, P. & Zhao, F. 2005. Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J. Microbiol. 43:361-365.
  173. Teodoresco, E. C. 1905. Organisation et developpement du Dunaliella, nouveau genre de Volvocacee-Polyblepharidee. Beih. z. Bot. Centralbl. 18:215-232.
  174. Thompson, G. A. Jr. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302:17-45. https://doi.org/10.1016/0005-2760(96)00045-8
  175. Tornabene, T. G., Holzer, G. & Peterson, S. L. 1980. Lipid profile of the halophilic alga, Dunaliella salina. Biochim. Biophys. Res. Commun. 96:1349-1356. https://doi.org/10.1016/0006-291X(80)90099-6
  176. Tran, D., Haven, J., Qiu, W. -G. & Polle, J. E. W. 2009. An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229:723-729. https://doi.org/10.1007/s00425-008-0866-2
  177. Tseng, C. K. 2001. Algal biotechnology industries and research activities in China. J. Appl. Phycol. 13:375-380. https://doi.org/10.1023/A:1017972812576
  178. Urano, K., Kurihara, Y., Seki, M. & Shinozaki, K. 2010. 'Omics' analyses of regulatory networks in plant abiotic stress responses. Curr. Opin. Plant Biol. 13:132-138. https://doi.org/10.1016/j.pbi.2009.12.006
  179. Vidhyavathi, R., Venkatachalam, L., Sarada, R. & Ravishankar, G. A. 2008. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J. Exp. Bot. 59:1409-1418. https://doi.org/10.1093/jxb/ern048
  180. Vorst, P., Baard, R. L., Mur, L. R., Korthals, H. J. & van den Ende, H. 1994. Effect of growth arrest on carotene accumulation and photosynthesis in Dunaliella. Microbiology 140:1411-1417. https://doi.org/10.1099/00221287-140-6-1411
  181. Walker, T. L., Becker, D. K., Dale, J. L. & Collet, C. 2005a. Towards the development of a nuclear transformation system for Dunaliella tertiolecta. J. Appl. Phycol. 17:363-368. https://doi.org/10.1007/s10811-005-4783-5
  182. Walker, T. L., Collet, C. & Purton, S. 2005b. Algal transgenics in the genomic era. J. Phycol. 41:1077-1093. https://doi.org/10.1111/j.1529-8817.2005.00133.x
  183. Walker, T. L., Purton, S., Becker, D. K. & Collet, C. 2005c. Microalgae as bioreactors. Plant Cell Rep. 24:629-641. https://doi.org/10.1007/s00299-005-0004-6
  184. Wang, B., Zarka, A., Trebst, A. & Boussiba, S. 2003. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 39:1116-1124. https://doi.org/10.1111/j.0022-3646.2003.03-043.x
  185. Weldy, C. S. & Huesemann, M. 2007. Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. U. S. Department of Energy Journal of Undergraduate Research 7:115-122.
  186. Wijffels, R. H. 2008. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol. 26:26-31. https://doi.org/10.1016/j.tibtech.2007.10.002
  187. Wille, A., Zimmermann, P., Vranova, E., Fürholz, A., Laule, O., Bleuler, S., Hennig, L., Prelic, A., von Rohr, P., Thiele, L., Zitzler, E., Gruissem, W. & Buhlmann, P. 2004. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol. 5:R92. https://doi.org/10.1186/gb-2004-5-11-r92
  188. Xiong, L., Schumaker, K. S. & Zhu, J. -K. 2002. Cell Signaling during cold, drought, and salt stress. Plant Cell 14 Suppl:S165-S183. https://doi.org/10.1105/tpc.010278
  189. Xue, L., Pan, W., Jiang, G. & Wang, J. 2003. Transgenic Dunaliella salina as a bioreactor. USA Patent Application 2003/0066107.
  190. Yan, Y., Zhu, Y. -H., Jiang, J. -G. & Song, D. -L. 2005. Cloning and sequence analysis of the phytoene synthase gene from a unicellular chlorophyte, Dunaliella salina. J. Agric. Food Chem. 53:1466-1469. https://doi.org/10.1021/jf048358s
  191. Ye, Z. -W. & Jiang, J. -G. 2010. Analysis of an essential carotenogenic enzyme: $\zeta$-carotene desaturase from unicellular alga Dunaliella salina. J. Agric. Food Chem. 58:11477-11482. https://doi.org/10.1021/jf102885n
  192. Ye, Z. -W., Jiang, J. -G. & Wu, G. -H. 2008. Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol. Adv. 26:352-360. https://doi.org/10.1016/j.biotechadv.2008.03.004
  193. Zhu, Y. -H., Jiang, J. -G., Yan, Y. & Chen, X. -W. 2005. Isolation and characterization of phytoene desaturase cDNA involved in the $\beta$-carotene biosynthetic pathway in Dunaliella salina. J. Agric. Food Chem. 53:5593-5597. https://doi.org/10.1021/jf0506838
  194. Zulak, K.G. & Bohlmann, J. 2010. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol. 52:86-97. https://doi.org/10.1111/j.1744-7909.2010.00910.x

Cited by

  1. Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis vol.28, pp.2, 2013, https://doi.org/10.4490/algae.2013.28.2.203
  2. Analysis of carotenogenic genes promoters and WRKY transcription factors in response to salt stress in Dunaliella bardawil vol.7, 2017, https://doi.org/10.1038/srep37025
  3. The salt-regulated element in the promoter of lycopene β-cyclase gene confers a salt regulatory pattern in carotenogenesis of Dunaliella bardawil vol.19, pp.3, 2017, https://doi.org/10.1111/1462-2920.13539
  4. Identification of the carbonic anhydrases from the unicellular green alga Dunaliella salina strain CCAP 19/18 vol.19, 2016, https://doi.org/10.1016/j.algal.2016.07.010
  5. Metabolic fingerprinting of Dunaliella salina cultured under sulfur deprivation conditions 2017, https://doi.org/10.1007/s10811-017-1230-3
  6. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae vol.185-186, 2012, https://doi.org/10.1016/j.plantsci.2011.07.018
  7. Predictive modeling of β-carotene accumulation by Dunaliella salina as a function of pH, NaCI, and irradiance vol.61, pp.2, 2014, https://doi.org/10.1134/S1021443714010038
  8. The Challenge of Ecophysiological Biodiversity for Biotechnological Applications of Marine Microalgae vol.12, pp.3, 2014, https://doi.org/10.3390/md12031641
  9. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer vol.13, pp.10, 2015, https://doi.org/10.3390/md13106152
  10. Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae vol.9, pp.1, 2016, https://doi.org/10.1186/s13068-016-0556-4
  11. A dynamic growth model of Dunaliella salina : Parameter identification and profile likelihood analysis vol.173, 2014, https://doi.org/10.1016/j.biortech.2014.08.124
  12. Analysis of metabolic responses of Dunaliella salina to phosphorus deprivation vol.29, pp.3, 2017, https://doi.org/10.1007/s10811-017-1059-9
  13. Molecular Clone and Expression of a NAD+-Dependent Glycerol-3-Phosphate Dehydrogenase Isozyme Gene from the Halotolerant alga Dunaliella salina vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0062287
  14. Effects of salinity and temperature on inactivation and repair potential ofEnterococcus faecalisfollowing medium- and low-pressure ultraviolet irradiation vol.120, pp.3, 2016, https://doi.org/10.1111/jam.13026
  15. Isolation and Characterization of a Lycopene ε-Cyclase Gene of Chlorella (Chromochloris) zofingiensis. Regulation of the Carotenogenic Pathway by Nitrogen and Light vol.10, pp.12, 2012, https://doi.org/10.3390/md10092069
  16. Dunaliella salina(Chlorophyceae) Affects the Quality of NaCl Crystals vol.35, pp.3, 2014, https://doi.org/10.7872/crya.v35.iss3.2014.285
  17. Production of carotenoids by microalgae: achievements and challenges vol.125, pp.3, 2015, https://doi.org/10.1007/s11120-015-0149-2
  18. Evaluating Marinichlorella kaistiae KAS603 cell size variation, growth and TAG accumulation resulting from rapid adaptation to highly diverse trophic and salinity cultivation regimes vol.25, 2017, https://doi.org/10.1016/j.algal.2017.03.027
  19. Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity vol.8, pp.1, 2012, https://doi.org/10.1186/2046-9063-8-27
  20. Chemically-Induced Production of Anti-Inflammatory Molecules in Microalgae vol.16, pp.12, 2018, https://doi.org/10.3390/md16120478
  21. Algal Communities: An Answer to Global Climate Change vol.46, pp.10, 2018, https://doi.org/10.1002/clen.201800032
  22. CCAP 19/20 Produces Enhanced Levels of Carotenoid under Specific Nutrients Limitation vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/7532897
  23. RNA-Seq and transcriptome analysis of nitrogen-deprivation responsive genes in Dunaliella salina TG strain pp.2197-0025, 2019, https://doi.org/10.1007/s40626-019-00138-w
  24. Are we divorced from the species we study? vol.2, pp.None, 2011, https://doi.org/10.12688/f1000research.2-254.v1
  25. Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia vol.4, pp.None, 2011, https://doi.org/10.3389/fmicb.2013.00115
  26. Effect of Fe2+ and Mn2+ addition on growth and β-carotene production of Dunaliella salina vol.979, pp.None, 2011, https://doi.org/10.1088/1742-6596/979/1/012012
  27. Expression, purification, and subcellular localization of phospholipase C in Dunaliella salina vol.37, pp.4, 2019, https://doi.org/10.1007/s00343-019-8183-0
  28. Carotenoids Overproduction in Dunaliella Sp.: Transcriptional Changes and New Insights through Lycopene β Cyclase Regulation vol.9, pp.24, 2011, https://doi.org/10.3390/app9245389
  29. Assessment, monitoring and modelling of the abundance of Dunaliella salina Teod in the Meighan wetland, Iran using decision tree model vol.192, pp.3, 2011, https://doi.org/10.1007/s10661-020-8148-y
  30. Functional Identification of Two Types of Carotene Hydroxylases from the Green Alga Dunaliella bardawil Rich in Lutein vol.9, pp.6, 2011, https://doi.org/10.1021/acssynbio.0c00070
  31. Reconstruction and analysis of a carbon-core metabolic network for Dunaliella salina vol.21, pp.1, 2011, https://doi.org/10.1186/s12859-019-3325-0
  32. Lipid accumulation of Chlorella sp. TLD6B from the Taklimakan Desert under salt stress vol.9, pp.None, 2011, https://doi.org/10.7717/peerj.11525
  33. Influence of stress factors on growth and pigment production in three Dunaliella species cultivated outdoors in flat-plate photobioreactors vol.155, pp.1, 2011, https://doi.org/10.1080/11263504.2020.1727985
  34. Antioxidant Production in Dunaliella vol.11, pp.9, 2011, https://doi.org/10.3390/app11093959
  35. A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece) vol.13, pp.6, 2011, https://doi.org/10.3390/d13060270
  36. Toxicity evaluation and preparation of CoWO4 nanoparticles towards microalga Dunaliella salina vol.28, pp.27, 2021, https://doi.org/10.1007/s11356-021-12946-2
  37. Transcriptome profile of Dunaliella salina in Yuncheng Salt Lake reveals salt-stress-related genes under different salinity stresses vol.39, pp.6, 2011, https://doi.org/10.1007/s00343-021-0164-4
  38. The Effect of Various Salinities and Light Intensities on the Growth Performance of Five Locally Isolated Microalgae [Amphidinium carterae, Nephroselmis sp., Tetraselmis sp. (var. red pappas), Asterom vol.9, pp.11, 2011, https://doi.org/10.3390/jmse9111275
  39. How can the commercial potential of microalgae from the Dunaliella genus be improved? The importance of nucleotide metabolism with a focus on nucleoside diphosphate kinase (NDPK) vol.60, pp.None, 2011, https://doi.org/10.1016/j.algal.2021.102474