DOI QR코드

DOI QR Code

The Protective Effect of Black Ginseng Against Transient Focal Ischemia-induced Neuronal Damage in Rats

  • Park, Hyun-Jung (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Shim, Hyun-Soo (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Kim, Kyung-Soo (Department of Integrative Medicine and the Research Center of Behavioral Medicine, College of Medicine, The Catholic University of Korea) ;
  • Shim, In-Sop (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University)
  • Received : 2011.06.07
  • Accepted : 2011.12.12
  • Published : 2011.12.30

Abstract

Black ginseng (BG) has been widely used as herbal treatment for improving physiological function. In order to investigate the neuroprotective action of this herbal medicine, we examined the influence of BG on the learning and memory of rats using the Morris water maze, and we studied the effects of BG on the central cholinergic system and neural nitric oxide synthesis in the hippocampus of rats with neuronal and cognitive impairment. After middle cerebral artery occlusion was applied for 2h, the rats were administered BG (100 or 400 $mgkg^{-1}$, p.o.) daily for 2 weeks, followed by training and performance of the Morris water maze test. The rats with ischemic insults showed impaired learning and memory on the tasks. Treatment with BG produced improvement in the escape latency to find the platform. Further, the BG groups showed a reduced loss of cholinergic immunoreactivity and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)-positive neurons in the hippocampus compared to that of the ISC group. These results demonstrated that BG has a protective effect against ischemia-induced neuronal and cognitive impairment. Our results suggest that BG might be useful for the treatment of vascular dementia.

Keywords

References

  1. Klijn CJ, Hankey GJ; American Stroke Association and European Stroke Initiative. Management of acute ischaemic stroke: new guidelines from the American Stroke Association and European Stroke Initiative. Lancet Neurol. 2003;2:698-701. https://doi.org/10.1016/S1474-4422(03)00558-1
  2. Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49:377-391. https://doi.org/10.1016/S0361-9230(99)00072-6
  3. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5:146-156. https://doi.org/10.1038/nrn1326
  4. Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY, Korthuis RJ. Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med. 2007;43:1048-1060. https://doi.org/10.1016/j.freeradbiomed.2007.06.018
  5. Mulvey JM, Dorsch NW, Mudaliar Y, Lang EW. Multimodality monitoring in severe traumatic brain injury: the role of brain tissue oxygenation monitoring. Neurocrit Care. 2004;1:391-402. https://doi.org/10.1385/NCC:1:3:391
  6. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol. 1997;54:1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  7. O'Hara M, Kiefer D, Farrell K, Kemper K. A review of 12 commonly used medicinal herbs. Arch Fam Med. 1998;7:523-536. https://doi.org/10.1001/archfami.7.6.523
  8. Lee JH, Shen GN, Kim EK, Shin JH, Myung CS, Oh HJ, Kim DH, Roh SS, Cho W, Seo YB, Park YJ, Kang CW, Song GY. Preparation of black ginseng and its antitumor activity. Korean J Orient Physiol Pathol. 2006;20:951-956.
  9. Song GY, Oh HJ, Roh SS, Seo YB, Park YJ, Myung CS. Effect of black ginseng on body weight and lipid profiles in male rats fed normal diets. Korean J Pharmacog. 2006;50:381-385.
  10. Yun TK. Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutat Res. 2003;523-524:63-74.
  11. Kim SN, Ha YW, Shin H, Son SH, Wu SJ, Kim YS. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharm Biomed Anal. 2007;45:164-170. https://doi.org/10.1016/j.jpba.2007.05.001
  12. Baek NI, Kim DS, Lee YH, Park JD, Lee CB, Kim SI. Ginsenoside Rh4, a genuine dammarane glycoside from Korean red ginseng. Planta Med. 1996;62:86-87. https://doi.org/10.1055/s-2006-957816
  13. Yun TK. Experimental and epidemiological evidence of the cancer-preventive effects of Panax ginseng C.A. Meyer. Nutr Rev. 1996;54:S71-81.
  14. Kim KT, Yoo KM, Lee JW, Eom SH, Hwang IK, Lee CY. Protective effect of steamed American ginseng (Panax quinquefolius L.) on V79-4 cells induced by oxidative stress. J Ethnopharmacol. 2007;111:443-450. https://doi.org/10.1016/j.jep.2007.01.004
  15. Kang KS, Kim HY, Yamabe N, Nagai R, Yokozawa T. Protective effect of sun ginseng against diabetic renal damage. Biol Pharm Bull. 2006;29:1678-1684. https://doi.org/10.1248/bpb.29.1678
  16. Wargovich MJ. Colon cancer chemoprevention with ginseng and other botanicals. J Korean Med Sci. 2001;16(Suppl):S81-S86.
  17. Sun BS, Gu LJ, Fang ZM, Wang CY, Wang Z, Lee MR, Li Z, Li JJ, Sung CK. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC-ELSD. J Pharm Biomed Anal. 2009;50:15-22. https://doi.org/10.1016/j.jpba.2009.03.025
  18. D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001;36:60-90. https://doi.org/10.1016/S0165-0173(01)00067-4
  19. Scherer-Singler U, Vincent SR, Kimura H, McGeer EG. Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neurosci Methods. 1983;9:229-234. https://doi.org/10.1016/0165-0270(83)90085-7
  20. Kim IB, Oh SJ, Chun MH. Neuronal nitric oxide synthase immunoreactive neurons in the mammalian retina. Microsc Res Tech. 2000;50:112-123. https://doi.org/10.1002/1097-0029(20000715)50:2<112::AID-JEMT3>3.0.CO;2-S
  21. Paxinos G, Watson C, Pennisi M, Topple A. Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods. 1985;13:139-143. https://doi.org/10.1016/0165-0270(85)90026-3
  22. Lee B, Choi Y, Kim H, Kim SY, Hahm DH, Lee HJ, Shim I. Protective effects of methanol extract of Acori graminei rhizoma and Uncariae Ramulus et Uncus on ischemia-induced neuronal death and cognitive impairments in the rat. Life Sci. 2003;74:435-450. https://doi.org/10.1016/j.lfs.2003.06.034
  23. Torres JB, Assuncao J, Farias JA, Kahwage R, Lins N, Passos A, Quintairos A, Trevia N, Diniz CW. NADPH-diaphorase histochemical changes in the hippocampus, cerebellum and striatum are correlated with different modalities of exercise and watermaze performances. Exp Brain Res. 2006;175:292-304. https://doi.org/10.1007/s00221-006-0549-9
  24. Susswein AJ, Katzoff A, Miller N, Hurwitz I. Nitric oxide and memory. Neuroscientist. 2004;10:153-162. https://doi.org/10.1177/1073858403261226
  25. Matsunaga K, Mukasa H. The effect of alcohol on the human memory. Arukoru Kenkyuto Yakubutsu Ison. 1986;21:64-73.
  26. Luine VN, Jacome LF, Maclusky NJ. Rapid enhancement of visual and place memory by estrogens in rats. Endocrinology. 2003;144:2836-2844. https://doi.org/10.1210/en.2003-0004
  27. Sato T, Teramoto T, Tanaka K, Ohnishi Y, Irifune M, Nishikawa T. Effects of ovariectomy and calcium deficiency on learning and memory of eight-arm radial maze in middle-aged female rats. Behav Brain Res. 2003;142:207-216. https://doi.org/10.1016/S0166-4328(03)00010-X
  28. Du JY, Li XY, Zhuang Y, Wu XY, Wang T. Effects of acute mild and moderate hypoxia on human short memory. Space Med Med Eng (Beijing). 1999;12:270-273.
  29. Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 1993;16:206-214. https://doi.org/10.1016/0166-2236(93)90156-G
  30. Medina JH, Izquierdo I. Retrograde messengers, long-term potentiation and memory. Brain Res Brain Res Rev. 1995;21:185-194. https://doi.org/10.1016/0165-0173(95)00013-5
  31. Hawkins RD, Son H, Arancio O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res. 1998;118:155-172.
  32. Zorumski CF, Izumi Y. Modulation of LTP induction by NMDA receptor activation and nitric oxide release. Prog Brain Res. 1998;118:173-182.
  33. Bartus RT, Dean RL 3rd, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408-414. https://doi.org/10.1126/science.7046051
  34. Coyle JT, Price DL, DeLong MR. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science. 1983;219:1184-1190. https://doi.org/10.1126/science.6338589
  35. Waite JJ, Holschneider DP, Scremin OU. Selective immunotoxin- induced cholinergic deafferentation alters blood flow distribution in the cerebral cortex. Brain Res. 1999;818:1-11. https://doi.org/10.1016/S0006-8993(98)01174-3
  36. Bredt DS, Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA. 1989;86:9030-9033. https://doi.org/10.1073/pnas.86.22.9030
  37. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA. 1991;88:7797-7801. https://doi.org/10.1073/pnas.88.17.7797
  38. Hope BT, Michael GJ, Knigge KM, Vincent SR. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA. 1991;88:2811-2814. https://doi.org/10.1073/pnas.88.7.2811
  39. Faber-Zuschratter H, Seidenbecher T, Reymann K, Wolf G. Ultrastructural distribution of NADPH-diaphorase in the normal hippocampus and after long-term potentiation. J Neural Transm. 1996;103:807-817. https://doi.org/10.1007/BF01273359
  40. Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus. Learn Mem. 1998;5:467-480.
  41. Daniel H, Hemart N, Jaillard D, Crepel F. Long-term depression requires nitric oxide and guanosine 3':5' cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci. 1993;5:1079-1082. https://doi.org/10.1111/j.1460-9568.1993.tb00961.x
  42. Daniel H, Levenes C, Crepel F. Cellular mechanisms of cerebellar LTD. Trends Neurosci. 1998;21:401-407. https://doi.org/10.1016/S0166-2236(98)01304-6
  43. Calabresi P, Centonze D, Gubellini P, Marfia GA, Pisani A, Sancesario G, Bernardi G. Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol. 2000;61:231-265. https://doi.org/10.1016/S0301-0082(99)00030-1
  44. Bon CL, Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci. 2003;23:1941-1948.
  45. Susswein AJ, Katzoff A, Miller N, Hurwitz I. Nitric oxide and memory. Neuroscientist. 2004;10:153-162. https://doi.org/10.1177/1073858403261226
  46. Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM. Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur J Neurosci. 2005;21:1679-1688. https://doi.org/10.1111/j.1460-9568.2005.03993.x
  47. Thorns V, Hansen L, Masliah E. nNOS expressing neurons in the entorhinal cortex and hippocampus are affected in patients with Alzheimer's disease. Exp Neurol. 1998;150:14-20. https://doi.org/10.1006/exnr.1997.6751

Cited by

  1. Ginseng: a promising neuroprotective strategy in stroke vol.8, pp.None, 2014, https://doi.org/10.3389/fncel.2014.00457
  2. Detoxifying effect of fermented black ginseng on H2O2-induced oxidative stress in HepG2 cells vol.34, pp.6, 2014, https://doi.org/10.3892/ijmm.2014.1972
  3. Black Ginseng Extract Counteracts Streptozotocin-Induced Diabetes in Mice vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0146843
  4. 흑삼의 프로사포게닌 추출물이 Streptozotocin으로 유도된 당뇨 쥐에 대한 항당뇨 효과 및 신장보호 효과 vol.24, pp.2, 2011, https://doi.org/10.7783/kjmcs.2016.24.2.115
  5. Anti-wrinkle effect of fermented black ginseng on human fibroblasts vol.39, pp.3, 2017, https://doi.org/10.3892/ijmm.2017.2858
  6. Anti-diabetic effect of black ginseng extract by augmentation of AMPK protein activity and upregulation of GLUT2 and GLUT4 expression in db/db mice vol.17, pp.None, 2017, https://doi.org/10.1186/s12906-017-1839-4
  7. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke vol.13, pp.None, 2011, https://doi.org/10.3389/fnins.2019.00294
  8. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects vol.24, pp.10, 2011, https://doi.org/10.3390/molecules24101856
  9. Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng vol.12, pp.9, 2011, https://doi.org/10.3390/nu12092590
  10. Electroacupuncture Promotes the Survival of the Grafted Human MGE Neural Progenitors in Rats with Cerebral Ischemia by Promoting Angiogenesis and Inhibiting Inflammation vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/4894881