DOI QR코드

DOI QR Code

Microstructure and Corrosion Behavior of Mg-xSn (x = 1, 3, 5, 7, 9 wt.%) Alloys

Mg-xSn(x = 1, 3, 5, 7, 9 wt.%) 합금의 미세조직 및 부식특성

  • Kang, Yong-Muk (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Sang-Hyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Jo, Su-Mi (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Kyung-Chul (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Byeong-Ho (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Ik-Min (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Yong-Ho (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2011.10.27
  • Accepted : 2011.12.14
  • Published : 2011.12.31

Abstract

In the present work, the corrosion properties of Mg-xSn (x = 1, 3, 5, 7 and 9 wt.%) alloys have been investigated. Potentiodynamic polarization and immersion tests were carried out in 3.5% NaCl solution of pH 7.2 at room temperature to measure the corrosion properties of Mg-xSn (x = 1, 3, 5, 7 and 9 wt.%) alloys. With increase of the Sn contents, the volume fraction of the $Mg_2Sn$ phase was increased. The corrosion rate of Mg-xSn alloys was increased up to 7 wt.%Sn and decreased above 9 wt.%Sn. Initiation of galvanic site during immersion mainly occurred at Mg/$Mg_2Sn$ interface and propagation went into ${\alpha}$-Mg. For this reason, corrosion properties of Mg-xSn (added from 1 wt.%Sn to 7 wt.%Sn alloys) alloys are decreased because the galvanic site was increased with increasing Sn addition. In Mg-9wt.%Sn alloy, however, the corrosion site were changed from Mg/$Mg_2Sn$ interface to ${\alpha}$-Mg/$M_2Sng$ interface in lamellar structure. Preferentially corrosion of ${\alpha}$-Mg/$M_2Sn$ interface in lamellar structure impeded corrosion propagation went into ${\alpha}$-Mg.

Keywords

References

  1. B. H. Kim, K. C. Park, Y. H. Park and I. M. Park : Mater. Lett. 65 (2011) 122-125 https://doi.org/10.1016/j.matlet.2010.09.035
  2. K. C. Park. B. H. Park, H. Kimura, Y. H. Park and I. M. Park : Mater. Trans. 51 (2010) 472-476 https://doi.org/10.2320/matertrans.M2009308
  3. S. M. Jo, K. C. Park, B. H. Park, H. Kimura, S. K. Park and Y. H. Park : Mater. Trans 52 (2011) 1088-1095 https://doi.org/10.2320/matertrans.MC201011
  4. A. A. Luo : Int. Mater. Rev. 49 (2004) 13-30 https://doi.org/10.1179/095066004225010497
  5. B. H. Kim. K. C. Park, Y. H. Park and I. M. Park : Mater. Sci. Eng. A 527 (2010) 6372-6377 https://doi.org/10.1016/j.msea.2010.06.055
  6. M. Yang, and F. Pan : Mater. Design 31 (2010) 68-75 https://doi.org/10.1016/j.matdes.2009.07.018
  7. S. Wei, Y.Chen, Y. Tang, H. Liu, S. Xiao, G. Niu, X. Zhang and Y. Zhao : Mater. Sci. Eng. A 492 (2009) 20-23
  8. C.L. Mendis, C.J. Bettles, M.A. Gibson and C.R. Hutchinson : Mater. Sci. Eng. A 435-436 (2006) 163-171 https://doi.org/10.1016/j.msea.2006.07.090
  9. International Magnesium Association, Year End Report 2002
  10. W. Xiao, S. Jia, J. Wang, J. Yang, L. Wang : Acta. Mater. 56 (2008) 934-941 https://doi.org/10.1016/j.actamat.2007.10.042
  11. A. Srinivasan, U. T. S. Pillai and B. C. Pai : Mater. Sci. Eng. A 527 (2010) 6543-6550 https://doi.org/10.1016/j.msea.2010.07.020
  12. H. Liu, Y. Chen, Y. Tang, S. Wei and G. Niu : J. Alloys. Compd. 440 (2007) 122-126 https://doi.org/10.1016/j.jallcom.2006.09.024
  13. A.L. Bowles, H. Dieringa, C. Blawert, N. Hort and K.U. Kainer : Mater. Sci. Forum. 488-489 (2005) 135.
  14. G. Song and A. Atrens : Adv. Eng. Mater. 5 (2003) 837-858 https://doi.org/10.1002/adem.200310405

Cited by

  1. The Effect of Ce Addition on Corrosion Behavior of Permanent Mold Casting Mg-4Al-2Sn-1Ca alloy vol.34, pp.6, 2014, https://doi.org/10.7777/jkfs.2014.34.6.187
  2. The Effect of Al and Sn Additions on Corrosion Behavior of Permanent Mold Casting Magnesium Alloy vol.35, pp.2, 2015, https://doi.org/10.7777/jkfs.2015.35.2.036
  3. Comparison of Electrochemical Corrosion Properties of Permanent Mold Casting GZ21 Alloy and AZ91 Alloy vol.36, pp.2, 2016, https://doi.org/10.7777/jkfs.2016.36.2.60
  4. AM80-xSn 마그네슘 합금의 반응고 주조 및 압출에 따른 미세조직 및 기계적 특성 vol.36, pp.6, 2011, https://doi.org/10.7777/jkfs.2016.36.6.215