DOI QR코드

DOI QR Code

Ultrastructure of the Digestive Diverticulum of Saxidomus purpuratus (Bivalvia: Veneridae)

개조개, Saxidomus purpuratus 소화맹낭의 미세구조

  • Ju, Sun-Mi (Department of Aqualife Medicine, Chonnam National University) ;
  • Lee, Jung-Sick (Department of Aqualife Medicine, Chonnam National University)
  • 주선미 (전남대학교 수산생명의학과) ;
  • 이정식 (전남대학교 수산생명의학과)
  • Received : 2011.07.26
  • Accepted : 2011.09.26
  • Published : 2011.09.30

Abstract

The anatomy and ultrastructure of the digestive diverticulum of Saxidomus purpuratus were described using light and electron microscopy. The digestive diverticulum of dark green color was situated on the gonad and connected to stomach by a primary duct. Digestive diverticulum is composed of numerous digestive tubules. The epithelial layer of digestive tubule, which is simple, is composed of basophilic cells and digestive cells. Basophilic cells are columnar in shape, and the electron density is higher than that of the digestive cell. The cytoplasm has a well-developed endoplasmic reticulum, tubular mitochondria, Golgi complex and membrane-bounded granules of high electron density. Digestive cells are columnar in shape, with development of microvilli on the free surface. Pinocytic vasicles, lysosomes and numerous mitochondria were observed in the apical cytoplasm of digestive cells. The results of this study suggest that basophilic cells and digestive cells in the digestive tubule are specialized in the extracellular and intracellular digestions, respectively.

개조개 소화맹낭의 해부학적 구조와 미세구조를 광학 및 전자현미경을 이용하여 기재하였다. 개조개는 한국 여수연안에서 2010년 5월에 채집하였다. 소화맹낭은 진한 녹색으로 생식소 위쪽에 위치하며, 일차소관으로 위와 연결되어 있었다. 소화맹낭은 다수의 소화선세관들로 구성되며, 각각의 소화선세관은 단층 상피층으로 호염기성세포와 소화세포들로 이루어져 있었다. 호염기성세포는 원주형으로 소화세포에 비해 전자밀도가 높았다. 세포질에는 잘 발달된 조면소포체, 관상의 미토콘드리아, 골지체 및 전자밀도가 높고 막을 가진 분비과립들을 함유하고 있었다. 소화세포는 원주형이며, 자유면에는 미세융모가 발달되어 있었다. 세포질 상부에서는 음소포, 용해소체 및 미토콘드리아가 관찰되었다. 본 연구에서 이러한 결과는 소화선세관의 호염기성세포와 소화세포는 각각 세포외 소화와 세포내 소화에 적당하게 분화되었음을 의미한다.

Keywords

References

  1. Albentosa, M. and Moyano, F.J. (2009) Differences in the digestive biochemistry between the intertidal clam, Ruditapes decussatus and the subtidal clam, Venerupis pullastra. Aquacult. Int., 17: 273-282. https://doi.org/10.1007/s10499-008-9199-1
  2. Alyakrinskaya, I.O. (2001) The dimensions, characteristics and functions of the crystalline style of molluscs. Bio. Bull., 28: 523-535 https://doi.org/10.1023/A:1016756629952
  3. Brock, V. (1989) Crassostrea gigas (Thunberg) hepatopancreas-cellulase kinetics and cellulolysis of living monocellular algae with cellulose walls. J. Exp. Mar. Bio. Ecol., 128: 157-164. https://doi.org/10.1016/0022-0981(89)90143-3
  4. de Villiers, C.J. and Hodgson, A.N. (1993) The filtration and feeding physiology of the infaunal estuarine bivalve Solen cylindraceus (Hanley 1843). J. Exp. Mar. Biol. Ecol., 167: 127-142. https://doi.org/10.1016/0022-0981(93)90188-T
  5. Dimitriadis, V.K., Domouhtsidou, G.P. and Cajaraville, M.P. (2004) Cytochemical and histochemical aspects of the digestive gland cells of the mussel Mytilus galloprovincialis (L.) in relation to function. J. Mol. Histol., 35: 501-509.
  6. Eble, A.F. (2001) Anatomy and histology of Mercenaria mercenaria. In: Biology of the hard clam. (ed. by Kraeuter, J.N. and Castagna, M.). pp. 117-220. Elsevier, New york.
  7. Fernandez-Reiriz, M.J., Labarta, U., Navarro, J.M. and Velasco, A. (2001) Enzymatic digestive activity in Mytilus chilensis (Hupe 1854) in response to food regimes and past feeding history. J. Comp. Physiol., 171: 203-221.
  8. Gosling, E. (2004) Bivalve molluscs: Biology, Ecology and Culture. 2. Morphology of bivalves. pp. 7-39, Blackwell Publishing Ltd., Oxford.
  9. Henry, M., Boucaud-Camou, E. and Lefort, Y. (1991) Functional micro-anatomy of the digestive gland of the scallop Pecten maximus (L.). Aquat. Living Resour., 4: 191-202. https://doi.org/10.1051/alr:1991021
  10. Ibarrola, I., Larretxea, X., Iglesias, J.I.P., Urrutia, M.B. and Navarro, E. (1998) Seasonal variation of digestive enzyme activities in the digestive gland and the crystalline style of the common cockle Cerastoderma edule. Comp. Biochem. Physiol., Part A, 121: 25-34. https://doi.org/10.1016/S1095-6433(98)10097-1
  11. Izagirre, U., Angulo, E., Wade, S.C., Gwynn, I. and Marigomez, I. (2009) $\beta$-Glucuronidase and hexosaminidase are marker enzymes for different compartments of the endo-lysosomal system in mussel digestive cells. Cell Tissue Res., 335: 441-454. https://doi.org/10.1007/s00441-008-0693-6
  12. Kwon, O.G., Min, D.K., Lee, J.R., Lee, J.S., Je, J.G. and Choi, B.R. (2001) Korean mollusks with color illustration. pp. 332, Hanguel Publishing. Busan.
  13. Logan, C.R., Evans, M.B., Ward, M.E., Scott, J.L., Carnegie, R.B. and Van Dover, C.L. (2008) Comparative ultrastructure of digestive diverticulae in bathymodiolin mussels: discovery of an unknown spherical inclusion (SIX) in digestive cells of a seep mussel. J. Shellfish Res., 27: 97-105. https://doi.org/10.2983/0730-8000(2008)27[97:CUODDI]2.0.CO;2
  14. Morton, B.S. (1983) Feeding and digestion in bivalves. In: The Mollusca Physiology 5th. (ed. by Saleuddin, A.S.M. and Wilburg, M.). pp. 563-586. Academic Press, New York.
  15. Owen, G. (1955) Observations on the stomach and digestive diverticula of the Lamellibranchia. I. The Anisomyaria and Eulamellibrasnchia. Quart. J. Micr. Sci., 96: 517-537.
  16. Owen, G. (1956) Observations on the stomach and digestive diverticula of the Lamellibranchia II. The Nuculidae. Quart. J. Micr. Sci., 97: 541-567.
  17. Owen, G. (1970) The fine structure of the digestive tubules of the marine bivalve Cardium edule. Phil. Trans. Roy. Soc. Lond. B, Biol. Sci., 258: 245-260. https://doi.org/10.1098/rstb.1970.0035
  18. Owen, G. (1972) Lysosomes, peroxisomes and bivalves. Scient. Progr., Oxford, 60: 299-318.
  19. Pal, S.G. (1972) The fine structure of the digestive tubules of Mya arenaria L. II. Digestive cell. Proc. malac. Soc. Lond., 40: 161-170.
  20. Park, J.J. and Lee, J.S. (2010). Ultrastructural changes in digestive gland and lipofuscin accumulation of the equilateral venus, Gomphina veneriformis (Bivalvia: Veneridae) on tributyltin chloride (TBTCl) toxicity. Korean J. Malacol., 26(1): 63-78.
  21. Reid, R.G.B. and Sweeney, B. (1980) The digestibility of the bivalve crystalline style. Comp. Biochem. Physiol., Part B, 65(2): 451-453. https://doi.org/10.1016/0305-0491(80)90048-6
  22. Robledo, Y. and Cajaraville, M.P. (1996) Ultrastructural and cytochemical study of the Golgi complex of molluscan (Mytilus galloprovincialis) digestive cells. Cell Tissue Res., 284: 449-458. https://doi.org/10.1007/s004410050605
  23. Robledo, Y., Marigómez, I., Angulo, E. and Cajaraville, M.P. (2006) Glycosylation and sorting pathway of lysosomal enzymes in mussel digestive cells. Cell Tissue Res., 324: 319-333. https://doi.org/10.1007/s00441-005-0125-9
  24. Wojtowicz, M.B. (1972) Carbohydrases of the digestive gland and the crystalline style of the Atlantic deep-sea scallop (Placopecten magellanicus Gmelin). Comp. Biochem. Physiol., Part A, 43(1): 131-141. https://doi.org/10.1016/0300-9629(72)90475-6
  25. Zaldibar, B., Cancio, I. and Marigómez, I. (2004) Circatidal variation in epithelial cell proliferation in the mussel digestive gland and stomach. Cell Tissue Res., 318: 395-402. https://doi.org/10.1007/s00441-004-0960-0

Cited by

  1. Ultrastructure of the Digestive Diverticulum of Tegillarca granosa (Bivalvia: Arcidae) vol.31, pp.1, 2015, https://doi.org/10.9710/kjm.2015.31.1.27
  2. Genetic distances of three venerid species identified by PCR analysis vol.31, pp.4, 2015, https://doi.org/10.9710/kjm.2015.31.4.257