DOI QR코드

DOI QR Code

Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO

PSO를 이용한 테오얀센 기반의 보행로봇 다리설계

  • 김선욱 (경남대학교대학원 첨단공학과) ;
  • 김동헌 (경남대학교 전기공학과)
  • Received : 2011.06.03
  • Accepted : 2011.09.20
  • Published : 2011.10.25

Abstract

In this paper, we proposed a Particle Swarm Optimization(PSO) to search the optimal link lengths for legged walking robot. In order to apply the PSO algorithm for the proposed, its walking robot kinematic analysis is needed. A crab robot based on four-bar linkage mechanism and Jansen mechanism is implemented in H/W. For the performance index of PSO, the stride length of the legged walking robot is defined, based on the propose kinematic analysis. Comparative simulation results present to illustrate the viability and effectiveness of the proposed method.

본 논문에서는 절 기구(bar linkage)형 다관절 보행로봇(multi-legged walking robot)의 최적다리 길이선정을 위하여 입자군집 최적화(PSO: Particle Swarm Optimization) 기법을 사용하였다. PSO 알고리즘을 적용하기 위해서 제안한 보행로봇의 기구학적인 해석이 필요하다. 게 로봇은 4절 링크 이론(four-bar linkage)과 얀센 메커니즘(Jansen mechanism)을 기반으로 설계되었다. 이러한 기구학적인 해석을 바탕으로 로봇의 보행보폭을 정의한다. 그리고 PSO의 학습 및 군집 특성을 이용하여 최대의 보행보폭을 가지는 10개(EA)의 링크(link)길이를 구한다. 시뮬레이션을 통해 각 링크의 위치와 다리 끝단의 보행보폭을 확인할 수 있다. 결과로서, PSO기법이 절 기구형 다관절 보행로봇의 최적다리 길이 선정에 효율적임을 보여 준다.

Keywords

Acknowledgement

Supported by : 경남대학교

References

  1. M. Gorner and G. Hirzinger, "Analysis and evaluation of the stability of a biologically inspired, leg loss tolerant gait for six and eight-legged walking robots," IEEE international conference on Robotics and Automation, pp. 4728-4735, May 2010.
  2. Y. Yanagihara, T. Takubo, K. Ohara, and T. Arai, "Optimization of grid wall walking by genetic algorithm," Proc. IEEE international conference on Mechatronics and Automation, pp. 1466-1470, Aug. 2009.
  3. K. Okada, M. Inaba, and H. Inoue, "Walking navigation system of humanoid robot using stereo vision based floor recognition and path planning with multi-layered body image," Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2155-2160, Oct. 2003.
  4. 김선욱, 김연균, 정하민, 이세한, 황승국, 김동헌, "얀센키네틱스를 기반으로 한 보행 로봇 개발," 한국 지능시스템학회 논문지, 제 20권, 4호, pp. 509-515, 2010.
  5. R. L. Norton, Design of Machinery, New York, Mc Graw-Hill, 1991.
  6. Theo Jansen,"Theo Jansen's strandbeest," Available: http://www.strandbeest.com/, [Accessed: December 7, 2009].
  7. D. Giesbrecht, Design and optimization of a one-de gree-of-freedom eight-bar leg mechanism for a walking machine, Canada, University of Manitoba: M. S. Thesis, 2010.
  8. A. J. Ingram, A new type of mechanical walking machine , South Africa, University of Johannesburg: Ph. D. Thesis, 2006.
  9. 김선욱, 김동헌, "4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석," 한국지능 시스템학회 논문지, 제 21권, 2호, pp. 159-164, 2011. https://doi.org/10.5391/JKIIS.2011.21.2.159
  10. Y. Shi and R. Eberhart, "A modified particle swarm optimizer," Proc. IEEE International Conference on Evolutionary Computation, pp.69-73, May 1998.
  11. T. Cristina, O. Erika, C. Marco, and D. R. Alessandro, "Analysis and Design of a 1-DOF Leg for Walking Machines," Robotics in Alpe-Adria-Danube Region, pp. 183-188, 2006.
  12. Joe Klann, "Klann linkage," Available: http://www.mechanicalspider.com/index.html, 2010, [Accessed: October 15, 2010].

Cited by

  1. Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure vol.22, pp.3, 2012, https://doi.org/10.5391/JKIIS.2012.22.3.347
  2. Model Predictive Control for Distributed Storage Facilities and Sewer Network Systems via PSO vol.22, pp.6, 2012, https://doi.org/10.5391/JKIIS.2012.22.6.722
  3. Work Analysis of Compliant Leg Mechanisms for Bipedal Walking Robots vol.10, pp.9, 2013, https://doi.org/10.5772/56926
  4. Contact Repulsion of Robotic Foot and Its Influence on Knee and Hip Joints vol.23, pp.1, 2013, https://doi.org/10.5391/JKIIS.2013.23.1.12
  5. Work Consideration of Leg Joints of Bipedal Robots vol.23, pp.3, 2013, https://doi.org/10.5391/JKIIS.2013.23.3.238