Method Validation for Monitoring of Agricultural Worker Exposure to Insecticide Fenthion

살충제 Fenthion에 대한 농작업자 노출 측정을 위한 분석/시험방법 검증

  • Kim, Eun-Hye (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Hye-Ri (Department of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Hoon (National Institute of Food and Drug Safety Evaluation) ;
  • Moon, Joon-Kwan (School of Plant, Life and Environmental Sciences, Hankyong National University) ;
  • Hong, Soon-Sung (National Institute of Agricultural Science and Technology) ;
  • Jeong, Mi-Hye (National Institute of Agricultural Science and Technology) ;
  • Park, Kyung-Hun (National Institute of Agricultural Science and Technology) ;
  • Lee, Hyo-Min (Risk Information Division, Risk Prevention Policy Bureau, Korea Food and Drug Administration) ;
  • An, Xue Hua (Zhejiang Academy of Agricultural Sciences) ;
  • Kim, Jeong-Han (Department of Agricultural Biotechnology, Seoul National University)
  • 김은혜 (서울대학교 농생명공학부) ;
  • 이혜리 (서울대학교 농생명공학부) ;
  • 최훈 (식품의약품안전청 식품의약품평가원) ;
  • 문준관 (한경대학교 식물생명환경과학부) ;
  • 홍순성 (농촌진흥청 농업과학기술원) ;
  • 정미혜 (농촌진흥청 농업과학기술원) ;
  • 박경훈 (농촌진흥청 농업과학기술원) ;
  • 이효민 (식품의약품안전청 위해예방정책국) ;
  • 안설화 (절강성농과원) ;
  • 김정한 (서울대학교 농생명공학부)
  • Received : 2011.09.27
  • Accepted : 2011.10.23
  • Published : 2011.12.31

Abstract

Exposure measurement of agricultural worker to pesticide is one of important part of health risk assessment of pesticide. Therefore exposure matrices, apparatus, instruments and methods must be validated in advance to field experiment. In this study, method validation with an organophosphorus insecticide fenthion was carried out for exposure monitoring of agricultural worker. LOD and LOQ were 0.01 and 0.05 ng, respectively. Calibration curve linearity ($R^2$ > 0.999) and reproducibility (C.V. < 3%) were also excellent. Recovery at LOQ, 10LOQ and 100LOQ levels from gloves, socks, mask, patch, solid sorbent, glass fiber filter was 76~113% (C.V. < 3%). Trapping efficiency was 95~105% while no breakthrough was observed. Method validation for the exposure monitoring was established successfully through several experiments. Such method validation can be usually performed in laboratory and not much different for each pesticide so that, this techniques will be applied widely in research for pesticide exposure monitoring by combination with body surface area and respiration rates.

농약을 살포하는 농작업자의 농약 노출 측정은 농약의 건강 위해성 평가에서 중요한 부분을 차지하기 때문에 정량적이고 신뢰성 있는 노출량의 측정을 위해서 노출 측정에 사용되는 재료와 기기/기구 및 방법은 포장 노출 시험 전에 미리 검증해야 한다. 본 연구는 유기인계 농약 중에서 살충제 fenthion을 대상으로 농작업자의 노출량 측정을 위한 분석/시험방법의 검증을 수행하였다. LOD는 0.01 ng, LOQ는 0.05 ng로 설정하였고, 표준 검량선의 직선성($R^2$ > 0.999)과 분석재현성(C.V. < 3%)은 매우 우수하였다. 또한 3수준(LOQ, 10LOQ, 100LOQ)으로 수행한 노출 시료(장갑, 양말, 마스크, 패치, 고체흡착제, 유리섬유필터) 중 fenthion의 회수율은 76~113%(C.V. < 3%)이었고, 호흡 노출 실험의 검증 중에서 포집효율은 95~105%이었다. 파과실험 결과 fenthion은 1차 고체흡착제 부분에만 존재하였다. 이와 같은 분석/실험법의 검증을 통하여 실제 포장 실험에서 유래한 노출 시료들을 신뢰성 있게 분석할 수 있는 방법을 확인/검증/확립하였다. 이러한 분석/시험법 검증은 실험실 수준에서 수행할 수 있고, 농약의 종류에 따라서도 크게 다르지 않기 때문에 신체 부위별 평균 체표면적이나, 평균 호흡량과의 조합을 통해서 농약 노출 연구에 적극적으로 활용될 것으로 판단한다.

Keywords

References

  1. ACGIH. (1983) Air sampling instruments, 6th edition. American Conference of Governmental Industrial Hygienists. Cincinnati, OH, p. A-7.
  2. Byoun J. Y., H. Choi, J. K. Moon, H. W. Park, K. H. Liu, Y. B. Ihm, B. S. Park, J. H. Kim (2005) Risk Assessment of Human Exposure to Methidathion during Harvest of Cucumber in Green House Journal of Korean Society of Toxicology 21:297-301.
  3. Calumpang S. M. F., M. J. B. Medina (1996) Applicator Exposure to Imidacloprid while Spraying Mangoes. Bulletin of Environmental Contamination and Toxicology 57:697-704. https://doi.org/10.1007/s001289900246
  4. Choi H., J. K. Moon, K. H. Liu, H. W Park, Y. B. Ihm, B. S Park, J. H. Kim (2006) Risk assessment of human exposure to cypermethrin during treatment of mandarin fields. Archives of environmental contamination and toxicology 50:437-442. https://doi.org/10.1007/s00244-005-1050-3
  5. Crosby D. G. (1998) Environmental toxicology and chemistry. Chapter 10 exposure and risk. 185-204.
  6. Davis J. E. (1980) Minimizing occupational exposure to pesticides: personnel monitoring. Residue Reviews 75:33-50.
  7. Durham W. F., H. R. Wolfe (1962) Measurement of Exposure of Workers to Pesticides. Bulletin of the World Health Organization 26:75-91.
  8. Farahat F. M., R. A. Fenske, J. R. Olson, K. Galvin, M. R Bonner, D. S. Rohlman, T. M. Farahat, P. J. Lein, W. K. Anger (2010) Chlorpyrifos exposures in Egyptian cotton field workers. Neurotoxicology 31:297-304. https://doi.org/10.1016/j.neuro.2010.02.005
  9. Fenske R. A., A. M. Blacker, S. J. Hamburger, G. S. Simon (1990) Worker exposure and protective clothing performance during manual seed treatment with lindane. Archives of environmental contamination and toxicology 19:190-196. https://doi.org/10.1007/BF01056086
  10. Fenske, R. A., E. W. Day (2005) Assessment of Exposure for Pesticide Handlers in Agricultural, Residential and Institutional Environments. John Wiley & Sons, Ltd.
  11. Fong W. G., H. A. Moye, J. N. Seiber, J. P. Toth (1999) Pesticide Residues in food: Methods, Technologies, and Regulations. Wiley Interscience. pp.3-4, 40-44, Canada.
  12. Griffiths J. T., C. R. Stearns, W. L. Thompson (1951) Parathion Hazards Encountered Spraying Citrus in Florida. Journal of Economic Entomology 44:160-163.
  13. Grover R., A. J. Cessna, L. A. Kerr (1985) Procedure for the determination of 2,4-D and dicamba in inhalation, dermal, hand-wash, and urine samples from spray applicators. Journal of Environmental Science and Health, Part B 20:113-128.
  14. Hughes E. A., A. Zalts, J. J. Ojeda, A. P. Flores, R. C. Glass, J. M. Montserrat (2006) Analytical method for assessing potential dermal exposure to captan, using whole body dosimetry, in small vegetable production units in Argentina. Pest Manag Sci 62:811-818. https://doi.org/10.1002/ps.1232
  15. Hughson G. W., R. J. Aitken (2004) Determination of dermal exposures during mixing, spraying and wiping activities. Ann Occup Hyg 48:245-55. https://doi.org/10.1093/annhyg/meh027
  16. Likas D. T., N. G. Tsiropoulos, G. E. Miliadis (2007) Rapid gas chromatographic method for the determination of famoxadone, trifloxystrobin and fenhexamid residues in tomato, grape and wine samples. Journal of Chromatography A 1150:208-214. https://doi.org/10.1016/j.chroma.2006.08.041
  17. Liu K. H., C. S. Kim, J. H. Kim (2003) Human exposure assessment to mancozeb during treatment of mandarin fields. Bulletin of Environmental Contamination and Toxicology 70:336-342. https://doi.org/10.1007/s00128-002-0196-1
  18. Machado-Neto J. G. (2001) Determination of safe work time and exposure control need for pesticide applicators. Bulletin of Environmental Contamination and Toxicology 67:20-26. https://doi.org/10.1007/s001280086
  19. Machera K., M Goumenou, E. Kapetanakis, A. Kalamarakis, C. R. Glass (2003) Determination of Potential Dermal and Inhalation Operator Exposure to Malathion in Greenhouses with the Whole Body Dosimetry Method. Ann Occup Hyg 47:61-70. https://doi.org/10.1093/annhyg/mef097
  20. Machera K., A. Tsakirakis, A. Charistou, P. Anastasiadou, C. R. Glass (2009) Dermal Exposure of Pesticide Applicators as a Measure of Coverall Performance Under Field Conditions. Ann Occup Hyg 53(6):573-584. https://doi.org/10.1093/annhyg/mep032
  21. Miller, J. M. (2005) Chromatography : concepts and contrasts (2nd), Wiley Intersciense, pp.286-287, U.S.A.
  22. NIOSH (1980) Development and validation of methods for sampling and analysis of workplace toxic substances, Research Report. U. S. Department of Health and Human Services, Publ. 80-133.
  23. OECD. (1997) Guidance document for the conduct of studies of occupational exposure to pesticides during agricultural application. OECD environmental health and safety publications. Series on Testing and Assessment Paris: Environmental Directorate OECD/GD(97)148.
  24. Rajan-Sithamparanadarajah R., M. Roff, P. Delgado, K. Eriksson, W. Fransman, J. H. Gijsbers, G. Hughson, M. Makinen, J. J. van Hemmen (2004) Patterns of dermal exposure to hazardous substances in European union workplaces. Ann Occup Hyg 48:285-97. https://doi.org/10.1093/annhyg/meh025
  25. Tomlin, C. D. S. (2006) The Pesticide Manual (14th), pp.423-424, British Crop Production Council, UK.
  26. Tsakirakis A., K. M. Kasiotis, N. Arapaki, A. Charistou, A. Tsatsakis, C. R. Glass, K. Machera (2011) Determination of operator exposure levels to insecticide during bait applications in olive trees: Study of coverall performance and duration of application. International Journal of Hygiene and Environmental Health 214:71-78. https://doi.org/10.1016/j.ijheh.2010.08.007
  27. Turnbull, G..L. (1985). Current trends and future needs. In: Turnbull GL (ed) Occupational hazards of pesticide use. Taylor & Francis, London. pp.99-116.
  28. U.S. Environmental Protection Agency (1987) Pesticide assessment guidelines, subdivision U, Applicator exposure monitoring, report No. 540/9-87-127, Office of prevention, pesticides and toxic substances, Washington, DC, USA
  29. U.S. Environmental Protection Agency (1996) "Occupational and residential exposure test guidelines, OPPTS 875.1000, EPA 712-C-96-261," U.S. EPA, Washinton, DC.
  30. Vercruysse F., S. Drieghe, W. Steurbaut, W. Dejonckheere (1999) Exposure assessment of professional pesticide users during treatment of potato fields. Pesticide Science 55:467-473. https://doi.org/10.1002/(SICI)1096-9063(199904)55:4<467::AID-PS924>3.0.CO;2-#
  31. Wolfe, H.R., Field exposure to airborne pesticides. Pg. 137-161 in Pollution from Pesticides and Agricultural Processes. R.E. Lee, Jr., ed. CRC Press, Cleveland, OH (1976).
  32. 김은혜, 이혜리, 최훈, 문준관, 홍순성, 정미혜, 박경훈, 이효민, 김정한 (2011) 농작업자에 대한 농약 노출의 정량적 측정 방법. 농약과학회지 15(4) 507-528.
  33. 농촌진흥청 (2010) 농약의 등록기준 농촌진흥청 고시, 농약 살포자 노출량 측정시험 166-172.
  34. 이혜리, 류명주, 박희원, 나예림, 송혁환, 금영수, Yongzhe Zhu, 김정한 (2009) HPLC를 이용한 배추, 사과, 감귤, 고추 중 살균제 Fenhexamid의 정밀 분석법 확립. 농약과학회지 13(4) 223-231.