Severe Outbreak of Rice Stripe Virus and Its Occurring Factors

벼줄무늬잎마름바이러스의 대 발생과 발생 요인

  • Received : 2011.09.18
  • Accepted : 2011.10.20
  • Published : 2011.12.31

Abstract

The genetic diagnosis methods by RT-PCR and Virion capture (VC)/RT-PCR against Rice stripe virus (RSV) were developed. Three diagnosis methods of seedling test, ELISA and RT-PCR were compared in virus detection sensitivity (VDS) for RSV. The VDS of ELISA for RSV viruliferous small brown plant hopper (SBPH) was higher with 40.5% than that of seedling test. The VDS of RT-PCR was higher with 21% than that of ELISA. The VDS of ELISA and VC/RT-PCR was same with 9.2% in average on the SBPH collected from fields at the areas of Gimpo, Pyungtaeg and Sihueng, Gyeonggi province in 2009. The specific primers of RSV for SBPH and rice plant were developed for the diagnosis by Real time PCR. The RQ value of Real time PCR for the viruliferous and non viruliferous SBPH was 1 for 50 heads of non viruliferous SBPH, 96.5 for 50 heads of viruliferous SBPH, 23.1 for 10 heads of viruliferous SBPH + 40 heads of non viruliferous SBPH, and 75.6 for 30 heads of viruliferous SBPH + 20 heads of non viruliferous SBPH. The RQ value was increased positively by the ratio of viruliferous SBPH. Full sequences of 4 genomes of RSV RNA1, RNA2, RNA3 and RNA4 were analysed for the 13 RSV isolates from rice plants collected from different areas. Genetic relationships among the RSV isolates of Korea, Japan and China were classified as China + Korea, and China + Korea + Japan by phylogenetic analysis for RSV RNA1 and RNA2. In case of RNA3 involved in pathogenicity, genetic relationship of RSV among the three countries was grouped into 3 as China, China + Korea, and Korea + Japan. According to the genetic relationships in RSV RNA4, RSV isolates were grouped into 4 as China, Korea, China + Korea + Japan, and Korea + Japan. Viruliferous insect rate (VIR) of RSV in average increased in each year from 2008 to 2010, and the rates were 4.3%, 6.1%, and 7.2%, respectively, at the 28 major rice production areas in 7 provinces including Gyeonggido. The highest VIR in each year was 11.3% of Gyeonggido in 2008, 20.1% of Jellanamdo in 2009 and 14.2% of Chungcheongbukdo in 2010. The highest VIR depending upon the investigated areas was 22.1% at Buan of Jellabukdo in 2008, 36% at Wando and Jindo of Jellanamdo in 2009, and 30.0% at Boeun of Chungcheongbukdo in 2010. Average population density (APD) of overwintered SBPH was 13.1 heads in 2008, 13.9 heads in 2009 and 5.6 heads in 2010. The highest APD was 39.1 and 60.4 heads at Buan of Jellabukdo in 2008 and 2009, respectively, and 14.0 heads at Pyungtaeg of Gyeonggido. The acreage of RSV occurred fields was 869 ha in the western and southern parts, mainly at Jindo and Wando areas, of Jellanamdo in 2008. In 2009, RSV occurred in the acreage of 21,541 ha covered whole country, especially, partial and whole plant death were occurred with infection rate of 55.2% at 3,025 plots in 53 Li, 39 Eup/Myun, 19 Si/Gun of Gyeonggido, Incheonsi, Chungcheongnamdo, Jeollabukdo and Jeollanamdo. Seasonal development of overwintered SBPH was investigated at Buan, Jeollabukdo, and Jindo, Jeollanamdo for 3 years from 2008. Most SBPH developed to the 3rd and 4th instar on the periods of May 20 to June 10, and they developed to the adult stage for the 1st generation on Mid and Late June. In 2009, all SBPH trapped by sky net trap were adult on May 31 to June 1 at Mid-western aeas of Taean, Seosan and Buan, and South-western areas of Sinan and Jindo. The population density of adult SBPH was 963 heads at Taean, 919 at Seocheon and 819 at Sinan area. The origin of these higher population of adult SBPH were verified from the population of non-overwintered SBPH but immigrant SBPH. From Mid May to Mid June in 2010, adult SBPH could not be counted as immigrant insects by sky net trap. The variation of RSV VIR was high with 2.1% to 9.5% for immigrant adult SBPH trapped by sky net trap at Hongsung of Chungcheongbukdo, Buan of Jeollabukdo and so forth in 2009. The highest VIR for the immigrant adult SBPH was 9.5% at Boryung of Chungcheongnamdo, followed by 7.9% at Hongsung of Chungcheongnamdo, 6.5% at Younggwang of Jeollanamdo, and 6.4% at Taean of Cheongcheongnamdo. The infection rate of RSV on rice plants induced by the immigrant adult SBPH cultivated near sky net trap after about 10 days from immigration on June 12 in 2009 was 84.6% at Taean, 65.4% at Buan and 92.9% at Jindo, and 81% in average through genetic diagnosis of RT-PCR. Barley known as a overwintering host plant of RSV had very low infection rate of 0.2% from 530 specimens collected at 10 areas covering whole country including Pyungtaeg of Gyeonggido. Twenty nine plant species were newly recorded as natural hosts of RSV. In winter annual plant species, 11 plants including Vulpia myuros showed RSV infection rate of 24.9%. The plant species in summer annual ecotype were 13 including Digitaria ciliaris with 44.9%, Echinochloa crusgalli var. echinata with 95.2% and Setaria faberi with 65.5% in infection rate of RSV. Five perennial plants including Miscanths sacchariflorus with infection rate of 33.3% were recorded as hosts of RSV. Rice cultivars, 8 susceptible cultivars including Donggin1 and 17 resistant ones including Samgwang, were screened in field conditions at 3 different areas of Buan, Iksan and Ginje in 2009. All the susceptible cultivars were showed typical symptom of mosaic and wilt. In 17 genetic resistant cultivar, 12 cultivars were susceptible, however, 5 cultivars were field-resistant plus genetic resistant to RSV as non symptom expression. When RSV was artificially inoculated at seedling stage to 4 cultivars known as genetic resistant and 3 cultivars known as genetic susceptible, the symptom expression in resistant cultivars was lower as 19.3% in average than that of 53.3% in susceptible ones. In comparison of symptom expression rate and viral infection rate using resistant Nampyung and susceptible Heugnam cultivars by artificial inoculation of RSV at seedling stage, the symptom expression of Heugnam was higher as 28% than 12% of Nampyung. However, virion infection of resistant Nampyung cultivar was higher as 12% reversely than 85% of susceptible Heugnam. Yield loss of rice was investigated by the artificial inoculation of RSV at the seedling stage of resistant cultivars of Nampyung and Onnuri, and susceptible cultivars of Donggin1 and Ungwang for 3 years from 2008. The average yield per plant was 7.8 g, 8.5 g and 13.8 g on rice plants inoculated at seedling stage, tillering stage and maximum tillering stage, respectively. The yield loss rate was increased by earlier infection of RSV with 51% at seedling stage, 46% at tillering stage and 13% at maximum tillering stage. In resistant rice cultivars, there was no statistically significant relation between infection time and yield loss. In natural fields on susceptible rice cultivar of Ungwang at Taean and Jindo areas in 2009, the yield loss rate was increased with same tendency to the infection hill rate having the corelation coefficient of 0.94 when the viral infection was over 23.4%.

벼줄무늬잎마름바이러스(Rice stripe virus, RSV)에 대하여 유전자 진단기술인 RT-PCR과 VC/RT-PCR 기술을 개발하였다. ELISA 진단법은 유묘 검정법 보다 평균 40.5%, RT-PCR 진단법은 ELISA 진단법 보다 21%의 진단 효율이 높았다. 2009년 경기도 김포, 평택, 시흥 지역에서 채집한 애멸구의 보독충률을 VC/RT-PCR 진단법과 ELISA 진단법으로 검정한 결과 전체 평균 보독충률은 9.2%로 동일하였다. 벼줄무늬잎마름바이러스가 감염된 벼 포장에서 수집한 13개 분리주의 유전자 유연성은 RNA1과 RNA2는 중국+한국, 중국+한국+일본의 2개의 군으로 구분되었다. 또한 병원성 발현에 관여하는 RNA3는 중국, 중국+한국, 한국+일본의 3개 군으로, RNA4는 중국, 한국, 중국+한국+일본, 한국+일본의 4개의 군으로 구분되었다. 경기도 등 7개 도의 주요 28개의 재배지역에서 채집한 애멸구의 전국 평균 보독충률은 2008년 4.3%, 2009년 6.1%, 2010년 7.2%로 매년 상승하였다. 2008년에는 경기도가 11.3%로 가장 높았으며, 2009년에는 전라남도가 20.1%, 2010년에는 경기도 12.0%, 충청북도 14.2%로 가장 높았다. 보독충률이 가장 높았던 지역은 2008년에는 전북 부안 지역이 22.1%, 2009년에는 전남 완도와 진도가 36%, 2010년에는 충북 보은이 30.0%였다. 월동 애멸구의 전국 평균 밀도는 2008년 13.1 마리, 2009년 13.9 마리, 2010년 5.6 마리였으며, 월동 애멸구의 밀도는 전북 부안 지역이 2008년 39.1 마리, 2009년 60.4 마리로 가장 높았으며, 2010년에는 경기 평택 지역이 14.0 마리로 가장 높았다. 2008년 RSV 발생은 전남 진도, 해남 지역을 중심으로 869 ha가 발생하였으며, 2009년에는 전국적으로 21,541 ha가 발생하였으며, 특히 서해안 지역의 경우 경기도, 인천시, 충남, 전북, 전남의 19개 시군, 39개 읍면, 53개 리에서 3,025 포장을 조사한 결과 55.2%가 부분 고사 이상의 피해가 발생하였다. 2008년부터 3년간 전북 부안, 전남 진도 등에서 월동 애멸구의 시기별 발육을 조사한 결과 5월 20일에서 6월 10일 경에는 월동 후 1세대는 대부분 3령과 4령 이었으며 성충은 6월 하순경에 최성기였다. 2009년 5월 31에서 6월 1일에 태안, 서산, 부안, 신안, 진도 등에서 공중 포충망에 채집한 애멸구는 모두 성충이었으며 밀도는 태안 지역이 963 마리, 서천 919 마리, 신안 819 마리 등으로 매우 많이 포획되었으며, 공중 포충망에 채집된 애멸구는 국내에서 월동한 애멸구 집단이 아니고 중국에서 비래한 애멸구 집단으로 확인되었다. 2010년에는 5월 중순에서 6월 중순까지 공중 포충망에 애멸구 성충이 거의 채집되지 않았다. 2009년 충남 홍성, 전북 부안, 전남 영광 등 서해안 8개 지역의 공중 포충망에서 채집한 애멸구 성충의 RSV 보독충률은 2.1%에서 9.5%로 변이가 컸으며, 보령이 9.5%로 가장 높았으며, 다음으로 충남 홍성 7.9%, 전남 영광 6.5%, 충남 태안 6.4%였다. 애멸구 비래 후 약 10일 후에 공중 포충망 주변의 논에 심겨진벼에 대하여 RSV의 유전자 진단 결과 태안 84.6%, 부안 65.4%, 진도 92.9% 이었으며, 평균 감염률은 81% 이었다. 보리는 RSV의 주요 월동 기주식물로 알려져 있으나 RSV의 감염률은 경기 평택 등 전국에서 530점을 채집하여 유전자 진단 결과 감염률이 0.2%로 매우 낮았다. RSV의 새로운 자연 기주식물로 29종이 확인되었다. 하계 일년생 식물은 조개풀 등 13종, 동계 일년생은 들묵새 등 11종, 다년생으로는 우산잔디 등 5종 이었다. RSV 감염률은 동계 일년생인 들묵새 24.9%, 하계 일년생인 바랭이 44.9%, 물피 95.2%, 가을강아지풀 65.5%이었으며, 다년생인 물억새는 33.3%였다. RSV에 감수성인 동진1호 등 8개 품종과 저항성인 삼광벼 등 17개 품종에 대하여 2009년 부안, 익산, 김제 지역의 자연 포장에서 병징 발현 여부를 조사한 결과 감수성 8개 품종은 모두 감수성이었으며, 진성 저항성 품종 중 온누리 등 12개 품종은 감수성이었으며 삼광벼 등 5개 품종은 포장 저항성이었다. RSV에 저항성인 남평벼 등 4 품종과 감수성인 동진1호 등 3 품종을 대상으로 바이러스를 인공접종한 결과 RSV의 병징 발현률은 감수성 품종의 경우 평균 53.3%이었으며 저항성 품종의 경우 평균 34.0%로 19.3% 낮았다. 감수성인 흑남벼와 저항성인 남평벼를 이용하여 병징 발현률과 바이러스 감염률을 조사한 결과 병징 발현률은 흑남벼 28%, 남평벼 12%로 감수성 품종이 병징 발현률이 2배 이상 높았다. 그러나 체내 바이러스 감염률은 흑남벼 85%, 남평벼 97%로 오히려 저항성 품종에서 12%의 높은 감염률을 보였다. 저항성 품종에서의 저항성 기작은 병징 발현에 대한 저항성이며 바이러스 증식에서는 저항성이 아니었다. RSV에 저항성 품종인 남평벼, 온누리와 감수성 품종인 동진1호, 운광벼를 이용하여 생육시기별로 인공접종하여 수량 감소를 2008년부터 3년간 조사한 결과 감수성 품종에서는 주당 수량을 보면 유묘기 감염시 7.8 g, 분얼기 감염시 8.5 g, 최고 분얼기 감염시 13.8 g으로 무처리에 비하면 수량 감소율이 유묘기 51%, 분얼기 46%, 최고 분얼기 13%로 일찍 감염될수록 수량 감소 영향이 컷다. 저항성 품종에서는 시기별 감염과 수량 감소가 통계적으로 상관이 없었다. 자연 발병된 농가 포장에서 운광 품종을 대상으로 태안과 진도지역에서 조사한 결과 발병경률 23.4% 이상이면 발병경률의 증가에 따라서 상관계수 0.94로 수량 감소율도 동일하게 증가하였다.

Keywords

References

  1. Cho, J.D., J.S. Kim, H.R. Kim, B.N. Chung and K.H. Ryu. (2006). Convenient nucleic acid detection for Tomato spotted wil tvirus: Virion captured/RT-PCR (VC/RT-PCR). Res. Plant Dis. 12(2):139-143. https://doi.org/10.5423/RPD.2006.12.2.139
  2. Cho, J.D., J.S. Kim, S.H. Lee and B.N. Chung. (2007). Triplex virion capture (VC) /RT-PCR for three seed transmission tobamoviruses of KGMMV, ZGMMV, KGMMV occurring on Cucurbitaceae. Res. Plant Dis. 13(2):82-87. https://doi.org/10.5423/RPD.2007.13.2.082
  3. Cho, J.D., T.S. Kim, J.H. Ki,, G.S. Choi, B.N. Chung, H.S. Choi and J.S. Kim. (2008). Convenient Virion Capture (VC)/PCR for Tomato yellow leaf curl gemini virus occurring on tomato in Korea. Plant Dis. 14(3):233-237. https://doi.org/10.5423/RPD.2008.14.3.233
  4. Choi, H.S., S.H. Lee, M.K. Kim, H.R. Kwak, J.S. Kim. (2010). Occurrence of virus diseases on major crops in 2009. Res. Plant Dis. 16(1):1-9. https://doi.org/10.5423/RPD.2010.16.1.001
  5. Chung, B. J. and S.H. Lee. (1971). Studies on the damage of Rice stripe virus disease. Res. Rept. RDA 14:91-98.
  6. Chung, B. J. and S.H. Lee. (1971). Studies on the host range of Rice stripe virus. Kor. J. Pl. Prot. 10(2):85-89.
  7. Chung, B.J. and S.H. Lee. (1970). Studies on the transmission mechanism of the Rice stripe disease. Res. Rept. RDA. 12(3):105-110.
  8. Chung, B.J., S.H. Lee and S.C. Lee. (1967). Studies on the insect transmission of the rice stipe disease. Res. Rept. RDA 9:217-220.
  9. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/ 98NT. Nucl. Acids. Symp. Ser. 41:95-98.
  10. Hamamatsu, C., S. Toriyama, T. Toyoda, and A. Ishihama. (1993). Ambisense coding strategy of the Rice stripe virus genome: in vitro translation studies. J. Gen. Viol. 74:1125-1131. https://doi.org/10.1099/0022-1317-74-6-1125
  11. Jonson, M.G., H.S. Choi, J.S. Kim, I.R. Choi, K.H. Kim. (2009). Complete genome sequence of the RNAs 3 and 4 segments of Rice stipe virus isolates in Korea and their phlogenetic relationships with Japan and China. Plant Pathol. J. 25(2):142-150. https://doi.org/10.5423/PPJ.2009.25.2.142
  12. Kang, H.J., K.S. Ahn, C.U. Han, K.H. Jeong, S.J. Park, J.J. Ji and J.S. Kim. (2010). Analysis of the factors involved in the occurrence of Rice stripe virus in Chungcheongbukdo in 20008 and 2009. Res. Plant Dis. 16(2):109-114. https://doi.org/10.5423/RPD.2010.16.2.109
  13. Kim, C.S. (2009). Virus-insect-plant interactions at RSV outbreak regions in Korea. APEC workshop on the epidemics of migratory insect pests and associated virus disease in rice and their impact on food security in APEC member economies. 59-74.
  14. Kim, J.S. (2009). Forecasting and occurrence of SBPH and RSV in Korea. APEC workshop on the epidemics of migratory insect pests and associated virus disease in rice and their impact on food security in APEC member economies. 90-106.
  15. Kim, J.S., S.H. Lee, H.S. Choi, G.S. Choi, J.D. Cho and B.N. Chung. (2008). Survey of viral diseases occurrence on Major crops in 2007. Res. Plant Dis. 14(1):1-9. https://doi.org/10.5423/RPD.2008.14.1.001
  16. Kim, J.S., S.H. Lee, H.S. Choi, J.D. Cho, T.H. Noh and J.Y. Kim. (2009). Convenient genetic diagnosis of virion captured (VC)/Rt-PCR for rice viruses (RSV, RBSDV) and small brown plant hopper. Res. Plant Dis. 15(2):57-62. https://doi.org/10.5423/RPD.2009.15.2.057
  17. Lee, J.Y., S.H. Lee and B.J. Chung. (1977). Studies on the occurrence of Rice black streaked dwarf virus in Korea. Kor. J. Pl. Prot. 16(2):121-125.
  18. Lee, K.W., S.H. Lee, B.J. Chung and H.A. Lamey. (1976). Studies on the insect transmission of Rice dwarf virus. Res. Rept. RDA 18:59-65.
  19. Lee, S.H. and C.H. Kim. (1968). Studies on the varietal resistance to the Rice stripe virus disease. Korean J. Pl. Prot. 5:47-53.
  20. Lee, S.H., K.W. Lee, B.J. chung and R.H. Halliwell. (1977). Studies on purificatin and serology of Rice dwarf virus. Korean J. Pl. Prot. 16(1):65-67.
  21. Lee, Y. Y., Lee, S. H. and Chung, B. J. (1977). Studies on the occurrence of Rice black streaked dwarf virus in Korea. Kor. J. P. Prot. 16(2):121-125.
  22. Ling, K.C. 1972. Rice virus diseases.. IRRI. P142.
  23. Miranda, G.J., O. Azzam and Y. Shirako. (2000). Comparison of nucleotide sequences between northern and southern Philippine isolates of Rice grassy stunt virus indicates occurrence of natural genetic reassortment. Virology 266:26-32. https://doi.org/10.1006/viro.1999.0068
  24. Tompson, J.D., D.G. Higgins and T.J. Gibson. (1994). Clustalw: Inproving the sensityvity of progressive multiple sequence alighment through sequence weighting, position speccific gap penalties and weight matrix choice. Nuceic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  25. Nolasco, G. deBlas, C., Torres, V., Ponz. F. (1993). A method combining immuno capture and PCR amplification in a microtiter plate for the detection of plant viruses and subvirial phathogenes. J. Viro. Methods 45:201-218 https://doi.org/10.1016/0166-0934(93)90104-Y
  26. Osman, F. and A. Rowhani. (2006). Application of a spotting sample preparation technique for the detection of pathogens in woody plants by RT-PCR and real-time PCR (TaqMan). J. Virol. Meth. 133:130-136. https://doi.org/10.1016/j.jviromet.2005.11.005
  27. Saito, N. and M. Nei. (1987). The neigher-joining metho: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  28. Sharman, M., J.E. Thomas, and R.G. Dietzgen. (2000). Development of a multiplex mimmuno capture PCR with colourimetric detection for viruseses of banana. J. Virol. Methods 89:75-88. https://doi.org/10.1016/S0166-0934(00)00204-4
  29. Suehiro, N., K. Matsuda, S. Okuda and T. Natsuaki. (2005). A simplified method for obtaining plant viral RNA for RT-PCR. J. Virol. Methods 125:67-73. https://doi.org/10.1016/j.jviromet.2005.01.002
  30. Toriyama, S. (2000). Rice stripe virus. CMI/AAB Description of plant viruses. No. 375.
  31. Toriyama, s, M. Takanoshi. Y. Sano, T. Shimizu and A. Ishihama. (1994). Neceotide sequence of RNA1, the largest genomic segment of Rice stripe virus, the prototype of the Tenuivirus, J. Gen. Viol. 75:3569-3579. https://doi.org/10.1099/0022-1317-75-12-3569
  32. Zhang, H.M., J. Yang, H.R. Sun, X. Xin, H.D. Wang, J.P. Chen and M.J. Adams. (2007). Genetic analysis of Rice stripe virus Zhejang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence motif conserved within the intergenic regions of ambisense segments of tenuiviruses. Arch. Virol. 152:1917-1923. https://doi.org/10.1007/s00705-007-1013-2