Preparation of Poly(ethylenimine) Anionic Exchnage Membrane Impregnated in Porous Polyethylene Membranes

다공성 폴리에틸렌 막에 폴리에틸렌이민을 함침 시킨 음이온교환막의 제조 연구

  • Park, Chan-Jong (Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Kim, Il-Hyung (Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Kim, Sung-Pyo (Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Lee, Hak-Min (Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Cheong, Seong-Ihl (Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Choi, Ho-Sang (Department of Chemical Engineering, Kyungil University) ;
  • Rhim, Ji-Won (Department of Chemical Engineering & Nano-Bio Technology, Hannam University)
  • 박찬종 (한남대학교 나노생명화학공학과) ;
  • 김일형 (한남대학교 나노생명화학공학과) ;
  • 김성표 (한남대학교 나노생명화학공학과) ;
  • 이학민 (한남대학교 나노생명화학공학과) ;
  • 정성일 (한남대학교 나노생명화학공학과) ;
  • 최호상 (경일대학교 화학공학과) ;
  • 임지원 (한남대학교 나노생명화학공학과)
  • Received : 2011.03.09
  • Accepted : 2011.03.21
  • Published : 2011.03.30

Abstract

In this study, the anionic exchange membranes were prepared through the impregnation of polyethylenimine (PEI) into porous polyethylene (PE) separator and then crosslinking with isophrhaloyl dichloride (IPC). To characterize the resulting membranes, the contact angles, FT-IR, ion exchnage capacity and ion conductivity were measured. The amide group is produced the reaction between amines in PEI and -COCl in IPC. In case of ion exchange capacity, 1.96 meq./g dry membrane at the reaction time, 30 sec was decreased to 1.14 meq./g dry membrane at 600 sec reaction time. The ion conductivity, $9.15{\times}10^{-2}S/cm$ at 30 sec reaction time, was obtained.

본 연구에서는 다공성 polyethylene (PE) 이차전지용 격리막에 poly(ethylenimine) (PEI)을 함침시켜 isophthaloyl dichloride (IPC)을 이용한 가교반응 통하여 음이온교환막을 제조하였다. 제조된 막의 특성화를 평가하기 위하여 함수율, 접촉각, FT-IR, 이온교환용량, 이온전도도 등을 측정하였다. PEI와 IPC의 반응은 아민과 -COCl기와의 반응으로 아마이드기가 생성된다. 이온교환용량의 경우 30초 반응에서 1.96 meq./g dry membrane부터 600초 반응으로 인한 1.14 meq./g dry membrane까지 감소하는 경향을 나타내었고, 이온전도도의 경우 IPC와의 가교시간이 30초일 때 $9.15{\times}10^{-2}S/cm$의 높은 값을 나타냄을 확인할 수 있었다.

Keywords

References

  1. G. J. Hwang and A. S. Kang, "Studies on Redox Flow Battery", Chemical Industry and Technology, 16(5), 445 (1998).
  2. Y. W. Lee, Y. Y. Kim, H. C. Kang, S. J. Shin, B. C. Lee, and A. S. Kang, "A Study on Ion-exchange Membranes in Redox-flow Battery (II)", Membrane Journal, 5(3), 109 (1995).
  3. J. Stephens, "The US army portable fuel cell program", Fuel Cells Bulletins, 2(13), 6 (1999). https://doi.org/10.1016/S1464-2859(99)80032-7
  4. D. H. Kim, B. S. Lee, B. S. Lee, S. W. Yoon, J. W. Rhim, and H. S. Byun, "Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds for Fuel Cell Application", Membrane Journal, 18(4), 336 (2008).
  5. T. Xu, "Ion exchange membranes : State of their development and perspective", J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  6. W. Ostwald, "Elektrische eigenschaften halbdurchlassiger schei-dewande", Z. Phys. Chem., 6, 71 (1890).
  7. K. H. Meyer and H. Strauss, "La permeabilite des membranes Vl, sur le passage du courant electrique a travers des membranes selective", Helv. Chim. Acta, 23, 795 (1940). https://doi.org/10.1002/hlca.19400230199
  8. N. Lakshminarayanaiah, "Transport Phenomena in Membranes", Academic Press (1969).
  9. M. P. Hogarth and G. A. Hard, "Direct Methanol Fuel Cell", Platinum Met. Rev., 40(4), 150 (1996).
  10. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion Impregnated Electrospun Polyethersulfone Membrane for PEMFC", Membrane Journal, 20(1), 41 (2010).
  11. R. K. Nagarale, G. S. Gohil, and V. K. Shahi, "Recent developments on ion-exchange membranes and electro-membrane processes", Advances in Colloid and Interface Science, 119, 97 (2006). https://doi.org/10.1016/j.cis.2005.09.005
  12. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, "Capacitive of $NH_{4}ClO_{4}$ Solutions with Carbon Aerogel Electrods", J. Appl. Electrochem., 26, 1007 (1996).
  13. K. S. Lee, J. H. Kim, and J. H. Kim, "Capacitive Deionzation of NaCl and NaF Solutions with Activated Carbon Cloth Electrodes", Appl. Chem., 7, 129 (2003).
  14. M. Y. Kariduraganavar, R. K. Nagarale, A. A. Kittur, and S. S. Kulkami, "Ion-exchange Membranes: Preparative Methods for Electrodialysis and Fuel Cell Applications", Desalination, 197, 225 (2006). https://doi.org/10.1016/j.desal.2006.01.019
  15. Y. Yang and S. Holdcroft, "Synthetic Strategies for Controlling the Morphology of Proton Conducting Polymer Membranes", Fuel Cells, 2, 171 (2005).
  16. H. B. Park and Y. M. Lee, "Polymer Electrolyte Membranes for Fuel Cell", J. Korean Ind. Eng. Chem., 13, 1 (2002).
  17. M. A. Green, "Thin-film Solar Cells: Review of Materials, Technologies and Commercial Status", J. Mater. Sci. - Mater. Electron., 18, 15 (2007). https://doi.org/10.1007/s10854-007-9177-9