Characterization of Composite Membranes Made from Sulfonated Poly(arylene ether sulfone) and Vermiculite with High Cation Exchange Capacity for DMFC Applications

높은 이온교환능력을 가지는 버미큘라이트와 술폰화된 폴리아릴렌에테르술폰으로 제조된 복합막의 연료전지 적용을 위한 특성평가

  • Kim, Deuk-Ju (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Hwang, Hae-Young (Aekyung Petrochemical Co., LTD.) ;
  • Nam, Sang-Yong (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
  • 김득주 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단) ;
  • 황해영 (애경유화 중앙연구소) ;
  • 남상용 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단)
  • Received : 2011.12.20
  • Accepted : 2011.12.28
  • Published : 2011.12.20

Abstract

In this study, polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) were prepared using a solution casting method with different amount of vermiculite (VMT) content. The dispersion of VMT particles in the SPAES matrix was confirmed by means of a scanning electron microscopy observation. The composite membrane containing less than 1 wt% of VMT has a smooth skin on the top and bottom, which means there is a good dispersion of VMT in the matrix. The water uptake of the composite membranes gradually increases as the temperature increases, and the results confirm that all the adsorbed water is bound water because VMT has a strong water affinity on account of its high cation exchange value. A composite membrane with a VMT content of less than 1 wt% increases the proton conductivity and reduces the methanol permeability. Of all the composite membranes, the membrane SPAES/VMT 1.0 has the best fuel cell performance in terms of membrane selectivity. The performance value of SPAES/VMT 1.0 is double that of Nafion 112, which suggests that SPAES/VMT1.0 could be an excellent candidate for direct methanol fuel cells.

본 연구에서는 용액 캐스팅법을 이용하여 각기 다른 함량의 VMT가 첨가된 SPAES/VMT 복합막이 제조되었다. SPAES 매트릭스 내의 VMT입자 분산은 전자주사현미경으로 관찰된 평균분포에 의해 확인되었다. 1 wt%보다 적은 함량을 포함한 복합막은 고분자 매트릭스 내에 좋은 분산성을 나타내어 막의 상부층과 하부층에 매끈한 표면을 가졌다. 복합막의 함수율은 온도가 증가함에 따라 급격하게 증가되었으며 VMT는 높은 이온교환능력으로 인하여 강한 수분친화도를 가짐으로 인해 높은 모든 흡착된 수분은 bound water인 것으로 확인하였다. VMT의 함량이 1 wt%보다 적게 첨가된 복합막에서 증가된 이온전도도와 낮아진 메탄올 투과도를 확인할 수 있었다. 모든 복합막 중에서 SPAES/VMT 1.0 wt% 복합막은 선택도 측면에서 가장 뛰어난 연료전지 성능을 가졌으며 Nafion 112과 비교하여 두배 이상 우수한 값을 나타내었다. 이것은 SPAES/VMT 1.0 wt% 복합막이 직접메탄올 연료전지의 구동을 위한 가장 우수한 조건이 될것이라 사료된다.

Keywords

References

  1. C. H. Rhee, H. K. Kim, H. Chang, and J. S. Lee, "Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel cells", Chem. Mater., 17, 1691 (2005). https://doi.org/10.1021/cm048058q
  2. H. Huh, D. J. Kim, and S. Y. Nam, "Proton conductivity and methanol permeability of sulfonated poly(aryl ether sulfone)/modified grapheme hybrid membranes", Membrane Journal, 21, 3 (2011).
  3. B. S. Pivovar, Y. Wang, and E. L. Cussler, "Pervaporation membranes in direct methanol fuel cells", J. Membr. Sci., 154, 155 (1999). https://doi.org/10.1016/S0376-7388(98)00264-6
  4. K. S. Yoon, J. H. Choi, J. K. Choi, Y. T. Hong, and H. S. Byun, "Fabrication and Characteristics of Partially Covalent- crosslinked Poly(arylene ether sulfone)s for Use in a Fuel Cell", Membrane Journal, 18, 4 (2008).
  5. M. K. Song, S. B. Park, Y. T. Kim, K. H. Kim, S. K. Min, and H. W. Rhee, "Characterization of polymer- layered silicate nanocomposite membranes for direct methanol fuel cells", Electrochim. Acta, 50, 639 (2004). https://doi.org/10.1016/j.electacta.2003.12.078
  6. P. Bebin, M. Caravanier, and H. Galiano, "Nafion/ clay- $SO_{3}H$ membrane for proton exchange membrane fuel cell application", J. Membr. Sci., 278, 35 (2006).
  7. H. Y. Hwang, S. J. Kim, D. Y. Oh, Y. T. Hong, and S. Y. Nam, "Proton Conduction and Methanol Transport through Sulfonated Poly(styrene- b- ethylene/ butylene- b- styrene)/Clay Nanocomposite", Macromol. Res., 19, 84. https://doi.org/10.1007/s13233-011-0107-6
  8. K. Zhang, J. Xu, K. Y. Wang, L. Cheng, J. Wang, and B. Liu, "Preparation and characterization of chitosan nanocomposites with vermiculite of different modification", Polym. Degrad. Stab., 94, 2121 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.10.002
  9. D. Carroll, "Ion exchange in clays and other minerals", Geological Society of America Bulletin, 70, 749 (1959). https://doi.org/10.1130/0016-7606(1959)70[749:IEICAO]2.0.CO;2
  10. W. L. Harrison, "Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymers via direct copolymerization: candidates for proton exchange membrane fuel cells", Hampton University, 2002.
  11. Y. T. Hong, C. H. Lee, H. S. Park, K. A. Min, H. J. Kim, S. Y. Nam, and Y. M. Lee, "Improvement of electrochemical performances of sulfonated poly (arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole)", J. Power Sources, 175, 724 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.068
  12. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  13. J. Y. Park, J. K. Choi, K. J. Choi, T. S. Hwang, H. J. Kim, and Y. T. Hong, "Effects of Mixed Casting Solvents on Morphology and Characteristics of Sulfonated Poly(aryl ether sulfone) Membranes for DMFC Applications", Membrane Journal, 18, 4 (2008).
  14. A. V. Tvardovskii, A. A. Fomkin, Y. I. Tarasevich, I. G. Polyakova, V. V. Serpinskii, and I. M. Guseva, "Sorption of water vapor on cation- substituted vermiculite", Russ. Chem. Bul., 41, 23 (1992). https://doi.org/10.1007/BF00863905
  15. O. Abollino, A. Giacomino, M. Malandrino, and E. Mentasti, "Interaction of metal ions with montmorillonite and vermiculite", Appl. Clay Sci., 38, 227 (2008). https://doi.org/10.1016/j.clay.2007.04.002
  16. Y. S. Choi, T. K. Kim, E. A. Kim, S. H. Joo, C. Pak, Y. H. Lee, H. Chang, and D. Seung, "Exfoliated sulfonated poly(arylene ether sulfone) clay nanocomposites", Advanced Materials, 20, 2341 (2008). https://doi.org/10.1002/adma.200702131
  17. V. Neburchilov, J. Martin, H. Wang, and J. Zhang, "A review of polymer electrolyte membranes for direct methanol fuel cells", J. Power Sources, 169, 221 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.044
  18. R. Gosalawit, S. Chirachanchai, S. Shishatskiy, and S. P. Nunes, "Sulfonated montmorillonite/sulfonated poly(ether ether ketone)(SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs)", J. Membr. Sci., 323, 337 (2008). https://doi.org/10.1016/j.memsci.2008.06.038
  19. B. Ruffmann, H. Silva, B. Schulte, and S. P. Nunes, "Organic/inorganic composite membranes for application in DMFC", Solid State Ionics, 162, 269 (2003).
  20. T. Fu, Z. Cui, S. Zhong, Y. Shi, C. Zhao, G. Zhang, K. Shao, H. Na, and W. Xing, "Sulfonated poly(ether ether ketone)/clay- $SO_{3}H$ hybrid proton exchange membranes for direct methanol fuel cells", J. Power Sources, 185, 32 (2008). https://doi.org/10.1016/j.jpowsour.2008.07.004
  21. M. M. Hasani- Sadrabadi, S. H. Emami, R. Ghaffarian, and H. Moaddel, "Nanocomposite membranes made from sulfonated poly (ether ether ketone) and montmorillonite clay for fuel cell applications", Energy Fuels, 22, 2539 (2008). https://doi.org/10.1021/ef700660a