DOI QR코드

DOI QR Code

Effect on the Formation of Fe3O4 with Ferrous Sulfate/Ferric Sulfate Molar Ratio

Fe3O4 생성에 미치는 황산제일철/황산제이철 몰비의 영향

  • Eom, Tae-Hyoung (Department of Material Science and Engineering, Chungnam National University) ;
  • Tuan, Huynh Thanh (Department of Material Science and Engineering, Chungnam National University) ;
  • Kim, Sam-Joong (Department of Material Science and Engineering, Chungnam National University) ;
  • An, Suk-Jin (Department of Material Science and Engineering, Chungnam National University) ;
  • Oh, Kyoung-Hwan (Department of Material Science and Engineering, Chungnam National University) ;
  • Suhr, Dong-Soo (Department of Material Science and Engineering, Chungnam National University)
  • Received : 2011.02.18
  • Accepted : 2011.03.23
  • Published : 2011.04.27

Abstract

The effect of ferrous/ferric molar ratio on the formation of nano-sized magnetite particles was investigated by a co-precipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide was used as a precipitant. In this experiment, the variables were the ferrous/ferric molar ratio (1.0, 1.25, 2.5 and 5.0) and the equivalent ratio (0.10, 0.25, 0.50, 0.75, 1.0, 2.0 and 3.0), while the reaction temperature ($25^{\circ}C$) and reaction time (30 min.) were fixed. Argon gas was flowed during the reactions to prevent the $Fe^{2+}$ from oxidizing in the air. Single-phase magnetite was synthesized when the equivalent ratio was above 2.0 with the ferrous/ferric molar ratios. However, goethite and magnetite were synthesized when the equivalent ratio was 1.0. The crystallinity of magnetite increased as the equivalent ratio increased up to 3.0. The crystallite size (5.6 to 11.6 nm), median particle size (15.4 to 19.5 nm), and saturation magnetization (43 to 71 $emu.g^{-1}$) changed depending on the ferrous/ferric molar ratio. The highest saturation magnetization (71 $emu.g^{-1}$) was obtained when the equivalent ratio was 3.0 and the ferrous/ferric molar ratio was 2.5.

Keywords

References

  1. W. Pei, H. Kumada, T. Natusme, H. Saito and S. Ishio, J. Magn. Magn. Mater., 310, 2375 (2007). https://doi.org/10.1016/j.jmmm.2006.10.837
  2. W. Cai and J. Wan, J. Colloid Interface Sci., 305, 366 (2007). https://doi.org/10.1016/j.jcis.2006.10.023
  3. K. C. Kim, E. K. Kim, J. W. Lee, S. L. Maeng and Y. S. Kim, Curr. Appl. Phys., 8, 758 (2008). https://doi.org/10.1016/j.cap.2007.04.021
  4. I. J. Bruce, J. Taylor, M. Todd, M. J. Davies, E. Borioni, C. Sangregorio and T. Sen, J. Magn. Magn. Mater., 284, 145 (2004). https://doi.org/10.1016/j.jmmm.2004.06.032
  5. S. S. Andrade, D. Rabelo, V. K. Garg, A. C. Oliveira, P. C. Morais, J. Magn. Magn. Mater., 289, 25 (2005). https://doi.org/10.1016/j.jmmm.2004.11.008
  6. T. Hosono, H. Takahashi, A. Fujita, R. J. Joseyphus, K. Tohji and B. Jeyadevan, J. Magn. Magn. Mater., 321, 3019 (2009). https://doi.org/10.1016/j.jmmm.2009.04.061
  7. M. Koike and O. Abe, Solid State Ionics, 172, 217 (2004). https://doi.org/10.1016/j.ssi.2004.05.011
  8. L. Cabrera, S. Gutierrez, N. Menendez, M. P. Morales and P. Herrasti, Electrochim. Acta, 53, 3436 (2008). https://doi.org/10.1016/j.electacta.2007.12.006
  9. R. Fan, X. H. Chen, Z. Gui, L. Liu and Z. Y. Chen, Mater. Res. Bull., 36, 497 (2001). https://doi.org/10.1016/S0025-5408(01)00527-X
  10. L. Diamandescu, D. M. T r b anu, V. Teodorescu and N. P. Pogrion, Mater. Lett., 37, 340 (1998). https://doi.org/10.1016/S0167-577X(98)00117-7
  11. Y. Okano and T. Nakamura, Colloid. Surface. Physicochem. Eng. Aspect., 139, 279 (1998). https://doi.org/10.1016/S0927-7757(98)00367-7
  12. M. G. S. Dotor, B. A. Morales, M. Benaissa and A. C. Prieto, Nanostruct. Mater., 8, 657 (1997). https://doi.org/10.1016/S0965-9773(97)00220-1
  13. T. Ozkaya, M. S. Toprak, A. Baykal, H. Kavas, Y. Koseoglu and B. Aktas, J. Alloy. Comp., 472, 18 (2009). https://doi.org/10.1016/j.jallcom.2008.04.101
  14. J. R. Correa, D. Canetti, R. Castillo, J. C. Llopiz and J. Dufour, Mater. Res. Bull., 41, 703 (2006). https://doi.org/10.1016/j.materresbull.2005.10.009
  15. A. P. A. Faiyas, E. M. Vinod, J. Joseph, R. Ganesan and R. K. Pandey, J. Magn. Magn. Mater., 322, 400 (2010). https://doi.org/10.1016/j.jmmm.2009.09.064
  16. T. Iwasaki, K. Kosaka, N. Mizutani, S. Watano, T. Yanagida, H. Tanaka and T. Kawai, Mater. Lett., 62, 4155 (2008). https://doi.org/10.1016/j.matlet.2008.06.034
  17. E. Iglesias-Silva, J. Rivas, L. M. Leon Isidro and M. A. Lopez-Quintela, J. Non-Crystalline Solids, 353, 829 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.12.050
  18. I. Martinez-Mera, M. E. Espinosa-Pesqueira, R. Perez-Hernandez and J. Arenas-Alatorre, Mater. Lett., 61, 4447 (2007). https://doi.org/10.1016/j.matlet.2007.02.018
  19. J. Majzlan, C. Botez and P. W. Stephens, Am. Mineral., 90, 411 (2005). https://doi.org/10.2138/am.2005.1701
  20. M. Kiyama, Bull. Chem. Soc. Jpn., 47, 1646 (1974). https://doi.org/10.1246/bcsj.47.1646
  21. M. Kosmulski, S. D. Vidal, E. Maczka and J. B. Rosenholm, J. Colloid Interface Sci., 271, 261 (2004). https://doi.org/10.1016/j.jcis.2003.10.032

Cited by

  1. Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application vol.22, pp.7, 2012, https://doi.org/10.3740/MRSK.2012.22.7.362