DOI QR코드

DOI QR Code

ZAS3 promotes TNFα-induced apoptosis by blocking NFκB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2

  • Shin, Dong-Hyeon (The Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Park, Kye-Won (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Wu, Lai-Chu (Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University) ;
  • Hong, Joung-Woo (The Graduate School of East-West Medical Science, Kyung Hee University)
  • Received : 2011.01.17
  • Accepted : 2011.02.01
  • Published : 2011.04.30

Abstract

ZAS3 is a large zinc finger transcription repressor that binds the ${\kappa}B$-motif via two signature domains of ZASN and ZASC. A loss-of-function study showed that lack of ZAS3 protein induced accelerated cell proliferation and tumorigenesis. Conversely, gain-of-function studies showed that ZAS3 repressed $NF{\kappa}B$-activated transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Based on these observations, we hypothesize that ZAS3 promotes apoptosis by interrupting anti-apoptotic activity of $NF{\kappa}B$. Here, we present evidence that upon $TNF{\alpha}$ stimulation, ZAS3 inhibits $NF{\kappa}B$-mediated cell survival and promotes caspase-mediated apoptosis. The inhibitory effect of ZAS3 on $NF{\kappa}B$ activity is mediated by neither direct association with $NF{\kappa}B$ nor disrupting nuclear localization of $NF{\kappa}B$. Instead, ZAS3 repressed the expression of two key anti-apoptotic genes of $NF{\kappa}B$, TRAF1 and TRAF2, thereby sensitizing cells to $TNF{\alpha}$-induced cell death. Taken together, our data suggest that ZAS3 is a tumor suppressor gene and therefore serves as a novel therapeutic target for developing anti-cancer drugs.

Keywords

References

  1. Sen, R. and Baltimore, D. (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705-716. https://doi.org/10.1016/0092-8674(86)90346-6
  2. Singh, H., Sen, R., Baltimore, D. and Sharp, P. A. (1986) A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319, 154-158. https://doi.org/10.1038/319154a0
  3. Chen, F., Castranova, V., Shi, X. and Demers, L. M. (1999) New insights into the role of nuclear factor-${\kappa}B$, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem. 45, 7-17.
  4. Ghosh, S., May, M. J. and Kopp, E. B. (1998) NF-${\kappa}B$ and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  5. Perkins, N. D. (2000) The Rel/NF-${\kappa}B$ family: friend and foe. Trends Biochem. Sci. 25, 434-440. https://doi.org/10.1016/S0968-0004(00)01617-0
  6. Cabannes, E., Khan, G., Aillet, F., Jarrett, R. F. and Hay, R. T. (1999) Mutations in the $I{\kappa}B{\alpha}$ gene in Hodgkin's disease suggest a tumour suppressor role for $I{\kappa}B{\alpha}$. Oncogene 18, 3063-3070. https://doi.org/10.1038/sj.onc.1202893
  7. Baldwin, A. S. Jr. (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-${\kappa}B$. J. Clin. Invest. 107, 241-246. https://doi.org/10.1172/JCI11991
  8. Arsura, M., Mercurio, F., Oliver, A. L., Thorgeirsson, S. S. and Sonenshein, G. E. (2000) Role of the $I{\kappa}B$ kinase complex in oncogenic Ras- and Raf-mediated transformation of rat liver epithelial cells. Mol. Cell Biol. 20, 5381-5391. https://doi.org/10.1128/MCB.20.15.5381-5391.2000
  9. Sovak, M. A., Bellas, R. E., Kim, D. W., Zanieski, G. J., Rogers, A. E., Traish, A. M. and Sonenshein, G. E. (1997) Aberrant nuclear factor-${\kappa}B$/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest. 100, 2952-2960. https://doi.org/10.1172/JCI119848
  10. Aggarwal, B. B. (2000) Tumour necrosis factors receptor associated signaling molecules and their role in activation of apoptosis, JNK and NF-${\kappa}B$. Ann. Rheum. Dis. 59 (Suppl 1), i6-16. https://doi.org/10.1136/ard.59.suppl_1.i6
  11. Chen, G. and Goeddel, D. V. (2002) TNF-R1 signaling: a beautiful pathway. Science 296, 1634-1635. https://doi.org/10.1126/science.1071924
  12. Hsu, H., Xiong, J. and Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-${\kappa}B$ activation. Cell 81, 495-504. https://doi.org/10.1016/0092-8674(95)90070-5
  13. Fernandes-Alnemri, T., Armstrong, R. C., Krebs, J., Srinivasula, S. M., Wang, L., Bullrich, F., Fritz, L. C., Trapani, J. A., Tomaselli, K. J., Litwack, G. and Alnemri, E. S. (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADDlike domains. Proc. Natl. Acad. Sci. U.S.A. 93, 7464-7469. https://doi.org/10.1073/pnas.93.15.7464
  14. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. and Baldwin, A. S. Jr. (1998) NF-${\kappa}B$ antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680-1683. https://doi.org/10.1126/science.281.5383.1680
  15. Wu, L. C., Mak, C. H., Dear, N., Boehm, T., Foroni, L. and Rabbitts, T. H. (1993) Molecular cloning of a zinc finger protein which binds to the heptamer of the signal sequence for V(D)J recombination. Nucleic Acids Res. 21, 5067-5073. https://doi.org/10.1093/nar/21.22.5067
  16. Allen, C. E., Mak, C. H. and Wu, L. C. (2002) The ${\kappa}B$ transcriptional enhancer motif and signal sequences of V(D)J recombination are targets for the zinc finger protein HIVEP3/KRC: a site selection amplification binding study. BMC Immunol. 3, 10. https://doi.org/10.1186/1471-2172-3-10
  17. Mak, C. H., Strandtmann, J. and Wu, L. C. (1994) The V(D)J recombination signal sequence and ${\kappa}B$ binding protein Rc binds DNA as dimers and forms multimeric structures with its DNA ligands. Nucleic Acids Res. 22, 383-390. https://doi.org/10.1093/nar/22.3.383
  18. Allen, C. E., Muthusamy, N., Weisbrode, S. E., Hong, J. W. and Wu, L. C. (2002) Developmental anomalies and neoplasia in animals and cells deficient in the large zinc finger protein KRC. Genes Chromosomes Cancer 35, 287-298. https://doi.org/10.1002/gcc.10128
  19. Allen, C. E. and Wu, L. C. (2000) Downregulation of KRC induces proliferation, anchorage independence, and mitotic cell death in HeLa cells. Exp. Cell Res. 260, 346-356. https://doi.org/10.1006/excr.2000.5029
  20. Hong, J. W., Allen, C. E. and Wu, L. C. (2003) Inhibition of NF-${\kappa}B$ by ZAS3, a zinc-finger protein that also binds to the ${\kappa}B$ motif. Proc. Natl. Acad. Sci. U.S.A. 100, 12301-12306. https://doi.org/10.1073/pnas.2133048100
  21. Hong, J. W. and Wu, L. C. (2010) ZAS3 represses NF${\kappa}B$dependent transcription by direct competition for DNA binding. BMB Rep. 43, 807-812. https://doi.org/10.5483/BMBRep.2010.43.12.807
  22. Brockman, J. A., Scherer, D. C., McKinsey, T. A., Hall, S. M., Qi, X., Lee, W. Y. and Ballard, D. W. (1995) Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-${\kappa}B$ activation. Mol. Cell Biol. 15, 2809-2818. https://doi.org/10.1128/MCB.15.5.2809
  23. Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G. and Baldwin, A. S. Jr. (1999) NF-${\kappa}B$ controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell Biol. 19, 5785-5799. https://doi.org/10.1128/MCB.19.8.5785
  24. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., Litwack, G. and Alnemri, E. S. (1996) Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. U.S.A. 93, 14486-14491. https://doi.org/10.1073/pnas.93.25.14486
  25. Chen, D., Li, X., Zhai, Z. and Shu, H. B. (2002) A novel zinc finger protein interacts with receptor-interacting protein (RIP) and inhibits tumor necrosis factor (TNF)- and IL1-induced NF-${\kappa}B$ activation. J. Biol. Chem. 277, 15985-15991. https://doi.org/10.1074/jbc.M108675200
  26. Takeuchi, M., Rothe, M. and Goeddel, D. V. (1996) Anatomy of TRAF2. Distinct domains for nuclear factor-${\kappa}B$ activation and association with tumor necrosis factor signaling proteins. J. Biol. Chem. 271, 19935-19942. https://doi.org/10.1074/jbc.271.33.19935
  27. Wu, L. C. (2002) ZAS: C2H2 zinc finger proteins involved in growth and development. Gene Expr. 10, 137-152. https://doi.org/10.3727/000000002783992479
  28. Song, H. Y., Regnier, C. H., Kirschning, C. J., Goeddel, D. V. and Rothe, M. (1997) Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-${\kappa}B$ and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. Sci. U.S.A. 94, 9792-9796. https://doi.org/10.1073/pnas.94.18.9792
  29. Wajant, H. and Scheurich, P. (2001) Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int. J. Biochem. Cell Biol. 33, 19-32. https://doi.org/10.1016/S1357-2725(00)00064-9
  30. Sanda, T., Iida, S., Ogura, H., Asamitsu, K., Murata, T., Bacon, K. B., Ueda, R. and Okamoto, T. (2005) Growth inhibition of multiple myeloma cells by a novel $I{\kappa}B$ kinase inhibitor. Clin. Cancer Res. 11, 1974-1982. https://doi.org/10.1158/1078-0432.CCR-04-1936
  31. Tanaka, A., Muto, S., Konno, M., Itai, A. and Matsuda, H. (2006) A new $I{\kappa}B$ $kinase{\beta}$ inhibitor prevents human breast cancer progression through negative regulation of cell cycle transition. Cancer Res. 66, 419-426. https://doi.org/10.1158/0008-5472.CAN-05-0741

Cited by

  1. Psoralen derivatives as inhibitors of NF- $$\upkappa \hbox {B/DNA}$$ κ B/DNA interaction: the critical role of the furan ring vol.19, pp.3, 2015, https://doi.org/10.1007/s11030-015-9586-2
  2. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway vol.45, pp.2, 2012, https://doi.org/10.5483/BMBRep.2012.45.2.85
  3. Gene expression of tumor necrosis factor receptor associated-factor (TRAF)-1 and TRAF-2 in inflammatory bowel disease vol.14, pp.5, 2013, https://doi.org/10.1111/1751-2980.12044
  4. Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells vol.45, pp.9, 2012, https://doi.org/10.5483/BMBRep.2012.45.9.104