DOI QR코드

DOI QR Code

Shear Strength Model for FRP Shear-Reinforced Concrete Beams

FRP 전단 보강 콘크리트 보의 전단강도 모델

  • Received : 2010.10.08
  • Accepted : 2010.12.13
  • Published : 2011.04.30

Abstract

In the present study, a unified shear design method was developed to evaluate the shear strength of concrete beams with and without FRP shear reinforcement. The contributions of FRP and concrete on shear strength were defined separately. By comparing the current design method calculated results with the existing test results, it was found that Triantafillou model shows a reliable prediction of FRP effective strain and FRP shear strength contributions. The concrete shear strength contribution was defined by the strain-based shear strength model developed in the previous study. The shear strength of concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal and shear stresses. The proposed strength model was verified by comparing its prediction results to prior test results. The comparisons showed that the proposed method accurately predicts the strengths of the test specimens for both FRP shear reinforced and unreinforced concrete beams.

이 연구에서는 FRP 전단보강 및 무보강 콘크리트 보의 전단강도를 정확하게 평가하기 위하여 통합전단설계방법을 개발하였다. 이를 위하여, FRP의 전단강도 기여분과 콘크리트의 전단강도 기여분을 각각 정의하였다. 기존의 FRP 전단강도 평가모델과 실험 결과를 비교 분석한 결과, Triantafillou의 FRP 전단강도 평가모델이 FRP의 유효변형률과 전단강도의 추정이 우수하므로 Triantafillou의 모델을 이용하여 FRP의 전단강도 기여분을 정의하였다. 콘크리트 전단강도 기여분은 선행 연구에서 제안된 변형도 기반 전단강도모델을 이용하여 정의하였다. 콘크리트 단면의 압축대에 작용하는 압축응력과 전단응력의 상관관계를 고려하기 위하여 콘크리트 재료파괴기준을 이용하여 콘크리트 전단강도 기여분을 산정하였다. 제안한 설계방법은 기존 실험 연구 결과와 비교하여 유효성을 검증하였다. 비교 결과 제안한 설계방법은 다양한 설계변수 범위에서 FRP 전단보강 및 무보강 콘크리트 보의 전단강도를 정확하게 평가하는 것으로 나타났다.

Keywords

References

  1. 이재훈, 신성진, “전단 보강이 없는 FRP RC보의 전단강도 예측,” 콘크리트학회 논문집, 22권, 3호, 2010, pp. 313-324. https://doi.org/10.4334/JKCI.2010.22.3.313
  2. Adhikary, B. B., Mutsuyoshi, H., and Ashraf, M., “Shear Strengthening of Reinforced Concrete Beams Using Fiber-Reinforced Polymer Sheets with Bonded Anchorage,” ACI Struct. J., Vol. 101, No. 5, 2004, pp. 660-668.
  3. Qu Z., Lu X. Z., and Ye L. P., “Size Effect of Shear Contribution of Externally Bonded FRP U-Jackets for RC Beams,” Proc. International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), Hong Kong, China, 2005, pp. 371-380.
  4. Lu, X. Z., Chen J. F., Ye, L. P., Teng, J. G., and Rotter, J. M., “Theoretical Analysis of FRP Stress Distribution in U Jacketed RC Beams,” Proc. 3rd Int. Conference on Composites in Construction (CCC2005), Lyon, France, 2005, pp. 541-548.
  5. Tom, N., Hamid, S., and Ehsani, M. R., “Shear and Flexural Strengthening of R/C Beams with Carbon Fiber Sheets,” Journal of Structural Engineering, Vol. 123, No. 7, 1997, pp. 903-911. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(903)
  6. Triantafillou, T. C., “Shear Strength of Reinforced Concrete Beams Using Epoxy-Bonded FRP Composites,” ACI Structural Journal, Vol. 95, No. 2, 1998, pp. 107-115.
  7. Khalifa, A. and Nanni, A., “Improving Shear Capacity of Existing RC T Section Beams Using CFRP Composites,” Cement Concrete Compos, Vol. 22, No. 3, 2000, pp. 165-174. https://doi.org/10.1016/S0958-9465(99)00051-7
  8. Chen, J. F. and Teng, J. G., “Hear Capacity of FRP Strengthened RC Beams: Fibre Reinforced Polymer Rupture,” Journal of Structural Engineering, ASCE, Vol. 129, No. 5, 2003, pp. 615-625. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(615)
  9. Chen, J. F. and Teng, J. G., “Hear Capacity of FRP Strengthened RC Beams: FRP Debonding,” Construction and Building Materials, Vol. 17, No. 1, 2003, pp. 27-41. https://doi.org/10.1016/S0950-0618(02)00091-0
  10. Teng, J. G., Chen, J. F., Smith, S. T., and Lam, L., FRP Strengthened RC Structures, John Wiley & Son, Ltd., England, 2002, 245 pp.
  11. Alagusundaramoorthy, P., Harik, I.. E., and Choo, C. C., “Shear Strength of R/C Beams Wrapped with CFRP Fabric,” Research Report, KTC-02-14/SPR 200-99-2F, Kentuky Transportation Center, 2002.
  12. Guadagnini, M., Pilakoutas, K., and Waldron, P., “Shear Resistance of FRP RC Beams: An Experimental Study,” Journal of Composites for Construction, ASCE, Vol. 10, No. 6, 2006, pp. 464-473. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(464)
  13. ACI 440, ACI 440. 2R-02 Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, USA, 2002, 45 pp.
  14. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), USA, 2008, 473 pp.
  15. European Committee for Standardization (CEN), Design of Concrete Structure, Part 1-6:General Rules and Rules for Building, EUROCODE 2, Brussels, Belgium, 2004, 225 pp.
  16. Zsutty, T. C., “Shear Strength Prediction for Separate Categories of Simple Beam Tests,” ACI Journal, Proceedings, Vol. 68, No. 2, 1971, pp. 138-143.
  17. Choi, K., Park, H., and Wight, J. K., “Unified Shear Strength Model for Reinforced Concrete Beams-Part I: Development,” ACI Struct. J., Vol. 104, No. 2, 2007, pp. 142-152.
  18. Choi, K. and Park, H., “Unified Shear Strength Model for Reinforced Concrete Beams-Part : Verification and Simplified Method,” ACI Struct., J., Vol. 104, No. 2, 2007, pp. 153-161.
  19. Ianniruberto, U. and Imbimbo, M., “Role of Fiber Reinforced Plastic Sheets in Shear Response of Reinforced Concrete Beams: Experimental and Analytical Results,” J. Compos. for Constr., Vol. 8, No. 5, 2004, pp. 415-424. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(415)
  20. Pellegrino, C. and Modena, C., “Fiber Reinforced Polymer Shear Strengthening of Reinforced Concrete Beams with Transverse Steel Reinforcement,” Journal of Composites for Construction, Vol. 6, No. 2, 2002, pp. 104-111. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(104)
  21. Pellegrino, C. and Modena, C., “Fiber-Reinforced Polymer Shear Strengthening of Reinforced Concrete Beams: Experimental Study and Analytical Modeling,” ACI Struct. J., Vol. 103, No. 5, 2006, pp. 720-728.
  22. Kotsovos, M. D. and Pavlovic, M. N., Ultimate Limit-State Design of Concrete Structures: a New Approach, Thomas Telford, London, 1998, 208 pp.
  23. Zararis, P. D. and Papadakis, G. C., “Diagonal Shear Failure and Size Effect in RC Beams without Web Reinforcement,” J. Struct. Engrg., ASCE, Vol. 127, No. 7, 2001, pp. 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
  24. Jelic, I., Pavlovic, M. N., and Kotsovos, M. D., “A Study of Dowel Action in Reinforced Concrete Beams,” Magazine of Concrete Research, Vol. 51, No. 2, 1999, pp. 131-141. https://doi.org/10.1680/macr.1999.51.2.131
  25. Tureyen, A. K. and Frosch, R. J., “Concrete Shear Strength: Another Perspective,” ACI Struct. J., Vol. 100, No. 5, 2003, pp. 609-615.
  26. Chen, W. F., “Plasticity in Reinforced Concrete,” New York, McGraw-Hill, 1982, pp. 204-205.
  27. Antoine, E. N., Prestressed Concrete Analysis and Design, Fundamentals, USA, 2004, pp. 1-1072.
  28. ACI Committee 224, Cracking of Concrete Members in Direct Tension (ACI 224.2R-92), USA, 1997, 12 pp.
  29. Ghaffar, A., Chaudhry, M. A., and Ali, M, k., “A New Approach for Measurement of Tensile Strength of Concrete,” Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan, Vol. 16, No. 1, 2005, pp. 1-9.