DOI QR코드

DOI QR Code

Asymmetric Mannich-type Reactions of Fluorinated Ketoesters with Binaphthyl-Modified Thiourea Catalysts

  • Kang, Young-Ku (Department of Chemistry, Soonchunhyang University) ;
  • Yoon, Sung-Je (Department of Chemistry, Soonchunhyang University) ;
  • Kim, Dae-Young (Department of Chemistry, Soonchunhyang University)
  • Received : 2010.12.31
  • Accepted : 2011.02.04
  • Published : 2011.04.20

Abstract

The catalytic enantioselective Mannich-type reaction promoted by chiral binaphthyl-modified bifunctional organocatalysts is described. The treatment of ${\alpha}$-fluoro-${\beta}$-ketoesters with N-Boc imines under mild reaction conditions afforded the corresponding ${\beta}$-aminated ${\alpha}$-fluoro-${\beta}$-ketoesters with excellent enantioselectivities (up to 98% ee).

Keywords

References

  1. Hudlicky, M.; Pavlath, A. E. Chemistry of Organic Fluorine Compounds II; American Chemical Society: Washington, DC, 1995.
  2. Kirk, K. L. J. J. Fluorine Chem. 2006, 127, 1013. https://doi.org/10.1016/j.jfluchem.2006.06.007
  3. Isanobor, C.; O’Hagan, D. J. Fluorine Chem. 2006, 127, 303. https://doi.org/10.1016/j.jfluchem.2006.01.011
  4. Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. https://doi.org/10.1126/science.1131943
  5. Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305. https://doi.org/10.1021/op700134j
  6. Hiyama, T.; Kanie, K.; Kusumoto, T.; Morizawa, Y.; Shimizu, M. Organofluorine Compounds: Chemistry and Applications; Springer-Verlag: Berlin, 2000.
  7. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. https://doi.org/10.1039/b610213c
  8. Enantiocontrolled Synthesis of Fluoro-organic Compounds; Soloshonok, V. A., Ed.; John Wiley & Sons: Chichester, 1999.
  9. Ramachandran, P. V., Ed.; Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions; ACS Symposium Series 746; American Chemical Society: Washington, DC, 2000.
  10. Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, 104, 1. https://doi.org/10.1021/cr030685w
  11. Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147.
  12. Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1. https://doi.org/10.1021/cr800221v
  13. France, S.; Weatherwax, A.; Lectka, T. Eur. J. Org. Chem. 2005, 475.
  14. Oestreich, M. Angew. Chem. Int. Ed. 2005, 44, 2324. https://doi.org/10.1002/anie.200500478
  15. Pihko, P. M. Angew. Chem. Int. Ed. 2006, 45, 544. https://doi.org/10.1002/anie.200502425
  16. Prakash, G. K. S.; Beier, P. Angew. Chem. Int. Ed. 2006, 45, 2172. https://doi.org/10.1002/anie.200503783
  17. Bobbio, C.; Gouverneur, V. Org. Biomol. Chem. 2006, 4, 2065. https://doi.org/10.1039/b603163c
  18. Shibata, N.; Ishimaru, T.; Nakamura, S.; Toru, T. J. Fluorine Chem. 2007, 128, 469. https://doi.org/10.1016/j.jfluchem.2006.12.014
  19. Brunet, V. A.; O’Hagan, D. Angew. Chem. Int. Ed. 2008, 47, 1179. https://doi.org/10.1002/anie.200704700
  20. Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727. https://doi.org/10.1039/b800310f
  21. Kang, Y. K.; Kim, D. Y. Curr. Org. Chem. 2010, 14, 917. https://doi.org/10.2174/138527210791111768
  22. Hintermann, L.; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359. https://doi.org/10.1002/1521-3773(20001201)39:23<4359::AID-ANIE4359>3.0.CO;2-P
  23. Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545. https://doi.org/10.1021/ol010281v
  24. Hamashima, Y.; Yagi, K.; Takano, H.; Tamás, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. https://doi.org/10.1021/ja028464f
  25. Ma, J.-A.; Cahard, D. Tetrahedron: Asymmetry 2004, 15, 1007. https://doi.org/10.1016/j.tetasy.2004.01.014
  26. Shibata, N.; Ishimaru, T.; Nagai, T.; Kohno. J.; Toru, T. Synlett 2004, 1703.
  27. Bernardi, L.; Jorgensen, K. A. Chem. Commun. 2005, 1324.
  28. Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309. https://doi.org/10.1021/ol050413a
  29. Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115. https://doi.org/10.1016/j.tetlet.2005.02.164
  30. Ishimaru, T.; Shibata, N.; Horikawa, T.; Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem. Int. Ed. 2008, 47, 4157. https://doi.org/10.1002/anie.200800717
  31. Lee, N. R.; Kim, S. M.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 829. https://doi.org/10.5012/bkcs.2009.30.4.829
  32. Kang, S. H.; Kim, D. Y. Adv. Synth. Catal. 2010, 352, 2783. https://doi.org/10.1002/adsc.201000515
  33. Kim, D. Y.; Kim, S. M.; Koh, K. O.; Mang, J. Y. Bull. Korean Chem. Soc. 2003, 24, 1425. https://doi.org/10.5012/bkcs.2003.24.10.1425
  34. Nichols, P. J.; DeMattei, J. A.; Barnett, B. R.; LeFur, N. A.; Chuang, T.-H.; Piscopio, A. D.; Koch, K. Org. Lett. 2006, 8, 1495. https://doi.org/10.1021/ol060398p
  35. Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. https://doi.org/10.1016/j.jfluchem.2009.06.002
  36. Companyo, X.; Hejnova, M.; Kamlar, M.; Vesely, J.; Moyano, A.; Rios, R. Tetrahedron Lett. 2009, 50, 5051.
  37. Nakamura, M.; Hajra, A.; Endo, K.; Nakamura, E. Angew. Chem. Int. Ed. 2005, 44, 7248. https://doi.org/10.1002/anie.200502703
  38. He, R.; Wang, X.; Hashimoto, T.; Maruoka, K. Angew. Chem. Int. Ed. 2008, 47, 9466. https://doi.org/10.1002/anie.200804140
  39. Mang, J. Y.; Kwon, D. G.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 259. https://doi.org/10.1016/j.jfluchem.2008.11.001
  40. Han, X.; Luo, J.; Liu, C.; Lu, Y. Chem. Commun. 2009, 2044.
  41. Li, H.; Zhang, S.; Yu, C.; Song, X.; Wang, W. Chem. Commun. 2009, 2136.
  42. Oh, Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. https://doi.org/10.1016/j.tetlet.2009.06.003
  43. Ishimaru, T.; Ogawa, S.; Tokunaga, E.; Nakamura, S.; Shibata, N. J. Fluorine Chem. 2009, 130, 1049. https://doi.org/10.1016/j.jfluchem.2009.08.004
  44. Cui, H.-F.; Yang, Y.-Q.; Chai, Z.; Li, P.; Zheng, C.-W.; Zhu, S.-Z. J. Org. Chem. 2010, 75, 117. https://doi.org/10.1021/jo902081w
  45. Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew. Chem. Int. Ed. 2006, 45, 4973. https://doi.org/10.1002/anie.200600625
  46. Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru, T. J. Am. Chem. Soc. 2007, 129, 6394. https://doi.org/10.1021/ja071509y
  47. Furukawa, T.; Shibata, N.; Mizuta, S.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem. Int. Ed. 2008, 47, 8051. https://doi.org/10.1002/anie.200802904
  48. Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896. https://doi.org/10.1016/j.tetlet.2009.06.056
  49. Furukawa, T.; Goto, Y.; Kawazoe, J.; Tokunaga, E.; Nakamura, S.; Yang, Y.; Du, H.; Kakehi, A.; Shiro, M.; Shibata, N. Angew. Chem. Int. Ed. 2010, 49, 1642. https://doi.org/10.1002/anie.200906866
  50. Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2008, 37, 29. https://doi.org/10.1039/b713885g
  51. Ting, A.; Schaus, S. E. Eur. J. Org. Chem. 2007, 5797.
  52. Marques, M. M. B. Angew. Chem. Int. Ed. 2006, 45, 348. https://doi.org/10.1002/anie.200502630
  53. Cordova, A. Acc. Chem. Res. 2004, 37, 102. https://doi.org/10.1021/ar030231l
  54. Sikert, M.; Schneider, C. Angew. Chem., Int. Ed. 2008, 47, 3631. https://doi.org/10.1002/anie.200800103
  55. Itoh, J.; Fuchibe, K.; Akiyama, T. Synthesis 2008, 1319.
  56. Kobayashi, S.; Yazaki, R.; Seki, K.; Ueno, M. Tetrahedron 2007, 63, 8425. https://doi.org/10.1016/j.tet.2007.05.115
  57. Saruhashi, K.; Kobayashi, S. J. Am. Chem. Soc. 2006, 128, 11232. https://doi.org/10.1021/ja062776r
  58. Kobayashi, S.; Ueno, M.; Saito, S.; Mizuki, Y.; Ishitani, H.; Yamashita, Y. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5476. https://doi.org/10.1073/pnas.0307870101
  59. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566. https://doi.org/10.1002/anie.200353240
  60. Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964. https://doi.org/10.1021/ja028353g
  61. Hamashima, Y.; Sasamoto, N.; Umebayashi, N.; Sodeoka, M. Chem. Asian J. 2008, 3, 1443. https://doi.org/10.1002/asia.200800120
  62. Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 2170. https://doi.org/10.1021/ja710398q
  63. Kobayashi, S.; Gustafsson, T.; Shimizu, Y.; Kiyohara, H.; Matsubara, R. Org. Lett. 2006, 8, 4923. https://doi.org/10.1021/ol0620186
  64. Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525. https://doi.org/10.1002/anie.200462202
  65. Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. https://doi.org/10.1021/jo900880t
  66. Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. https://doi.org/10.1002/adsc.200900268
  67. Kim, E. J.; Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1437. https://doi.org/10.5012/bkcs.2009.30.7.1437
  68. Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860.
  69. Han, X.; Kwiatkowski, J.; Xue, F.; Huang, K.-W.; Lu, Y. Angew. Chem., Int. Ed. 2009, 48, 7604. https://doi.org/10.1002/anie.200903635
  70. Jiang, Z.; Pan, Y.; Zhao, Y.; Ma, T.; Lee, R.; Yang, Y.; Huang, K.-W.; Wong, M. W.; Tan, C.-H. Angew. Chem., Int. Ed. 2009, 48, 3627. https://doi.org/10.1002/anie.200900964
  71. Pan, Y.; Zhao, Y.; Ma, T.; Yang, Y.; Liu, H.; Jiang, Z.; Tan, C.-H. Chem. Eur. J. 2010, 16, 779. https://doi.org/10.1002/chem.200902830
  72. Kim, D. Y.; Huh, S. C.; Kim, S. M. Tetrahedron Lett. 2001, 42, 6299. https://doi.org/10.1016/S0040-4039(01)01237-0
  73. Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. https://doi.org/10.1016/S0040-4020(01)00891-2
  74. Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897. https://doi.org/10.1021/jo0401772
  75. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565. https://doi.org/10.1016/j.tetlet.2006.05.003
  76. Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135.
  77. Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191. https://doi.org/10.5012/bkcs.2007.28.12.2191
  78. Kim, S. M.; Kang, Y. K.; Cho, M. J.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2435. https://doi.org/10.5012/bkcs.2007.28.12.2435
  79. Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett 2008, 1821.
  80. Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2093 https://doi.org/10.5012/bkcs.2008.29.11.2093
  81. Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2036. https://doi.org/10.5012/bkcs.2008.29.10.2036
  82. Mang, J. Y.; Kwon, D. G.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 249. https://doi.org/10.5012/bkcs.2009.30.1.249
  83. Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676. https://doi.org/10.1016/j.tet.2009.05.037
  84. Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. https://doi.org/10.1021/ja103786c
  85. Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659.
  86. Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527. https://doi.org/10.1016/j.tetlet.2008.07.041
  87. Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2091. https://doi.org/10.5012/bkcs.2008.29.11.2091
  88. Kwon, B. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1441. https://doi.org/10.5012/bkcs.2009.30.7.1441
  89. Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420.
  90. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. https://doi.org/10.1016/j.tetlet.2011.02.087
  91. Brunner, H.; Buegler, J.; Nuber, B. Tetrahedron: Asymmetry 1995, 6, 1699. https://doi.org/10.1016/0957-4166(95)00215-B
  92. Oliva, C. G.; Silva, A. M. S.; Resende, D. I. S. P.; Paz, F. A. A.; Cavaleiro, J. A. S. Eur. J. Org. Chem. 2010, 3449.
  93. Arai, T.; Watanabe, M.; Fujiwara, A.; Yokoyama, N.; Yanagisawa, A. Angew. Chem. Int. Ed. 2006, 45, 6978.
  94. Arai, T.; Watanabe, M.; Yanagisawa, Org. Lett. 2007, 9, 3595. https://doi.org/10.1021/ol7014362
  95. Liu, Q.-Z.; Wang, X.-L.; Luo, S.-W.; Zheng, B. L.; Qin, D.-B.; Tetrahedron Lett. 2008, 49, 7434. https://doi.org/10.1016/j.tetlet.2008.10.085

Cited by

  1. ChemInform Abstract: Asymmetric Mannich-Type Reactions of Fluorinated Ketoesters with Binaphthyl-Modified Thiourea Catalysts. vol.42, pp.38, 2011, https://doi.org/10.1002/chin.201138027
  2. Enantioselective Conjugate Addition of 4-Hydroxycoumarin to Enones Catalyzed by Binaphthyl-Modified Primary Amine Organocatalyst vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1825
  3. Asymmetric Conjugate Addition of 1-Fluoro-1-nitro(phenylsulfonyl)methane to Chalcones Catalyzed by Binaphthyl-Derived Organocatalyst vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2845
  4. Enantioselective Michael Addition of 2-Hydroxy-1,4-naphthoquinone to β,γ-Unsaturated α-Keto Esters Catalyzed by Binaphthyl-Modified Squaramide vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1619
  5. Enantioselective Direct α-Amination of Aromatic Ketones Catalyzed by Binaphthyl-Modified Primary Amine vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.1955
  6. Organocatalytic Enantioselective Michael Addition of Silyl Malonate to α,β-Unsaturated Enones: One-pot Synthesis of Chiral δ-Keto Esters vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2569
  7. Enantioselective methodologies using N-carbamoyl-imines vol.43, pp.2, 2014, https://doi.org/10.1039/C3CS60321K
  8. Direct Catalytic Asymmetric Mannich-Type Reaction of α- and β-Fluorinated Amides vol.137, pp.50, 2015, https://doi.org/10.1021/jacs.5b11064
  9. α-Halo Amides as Competent Latent Enolates: Direct Catalytic Asymmetric Mannich-Type Reaction vol.139, pp.24, 2017, https://doi.org/10.1021/jacs.7b03291
  10. Enantioselective Michael Addition of 3-Aryl-Substituted Oxindoles to Methyl Vinyl Ketone Catalyzed by a Binaphthyl-Modified Bifunctional Organocatalyst vol.17, pp.6, 2012, https://doi.org/10.3390/molecules17067523
  11. Organocatalytic Asymmetric Conjugate Addition of 3-Alkyl-Substituted Oxindoles to Vinyl Ketones vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3171
  12. Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to β,γ-Unsaturated α-Keto Esters vol.33, pp.11, 2011, https://doi.org/10.5012/bkcs.2012.33.11.3537
  13. Organocatalytic enantioselective decarboxylative Michael addition of β-ketoacids to α,β-unsaturated ketones vol.3, pp.5, 2011, https://doi.org/10.1039/c2ra21945j
  14. Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to Benzylidenemalonitriles vol.35, pp.1, 2011, https://doi.org/10.5012/bkcs.2014.35.1.98
  15. Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry vol.25, pp.2, 2011, https://doi.org/10.3390/molecules25020401
  16. Acyclic Branched α‐Fluoro Ketones for the Direct Asymmetric Mannich Reaction Leading to the Synthesis of β‐Tetrasubstituted β‐Fluoro Amines vol.132, pp.6, 2011, https://doi.org/10.1002/ange.201913927
  17. Acyclic Branched α‐Fluoro Ketones for the Direct Asymmetric Mannich Reaction Leading to the Synthesis of β‐Tetrasubstituted β‐Fluoro Amines vol.59, pp.6, 2011, https://doi.org/10.1002/anie.201913927
  18. Asymmetric Fluorination Reactions promoted by Chiral Hydrogen Bonding‐based Organocatalysts vol.362, pp.23, 2020, https://doi.org/10.1002/adsc.202000848
  19. Recent Progress in the Asymmetric Syntheses of α‐Heterofunctionalized (Masked) α‐ and β‐Amino Acid Derivatives vol.2021, pp.2, 2011, https://doi.org/10.1002/ejoc.202001077