Effect of PLGA/Silk Fibroin Hybrid Film on Attachment and Proliferation of Schwann Cells

실크피브로인을 함유한 PLGA 하이브리드 필름이 슈반세포의 부착과 증식에 미치는 영향

  • Kim, Hye-Lin (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University) ;
  • Yoo, Han-Na (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University) ;
  • Park, Hyun-Jin (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University) ;
  • Kim, Yong-Gi (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University) ;
  • Lee, Dong-Won (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University) ;
  • Kang, Young-Sun (Institute of Biomedical Science and Technology, Konkuk University) ;
  • Khang, Gil-Son (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology Chonbuk National University)
  • 김혜린 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 유한나 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 박현진 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 김용기 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 이동원 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 강영선 (건국대학교 의생명과학연구원) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자 나노공학과)
  • Received : 2010.05.10
  • Accepted : 2010.09.13
  • Published : 2011.01.25

Abstract

Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable synthetic polymer with acceptable mechanical strength and well-controlled degradation rate. Also, it can be easily fabricated into many shapes. Silk fibroin contains powerful bioactive molecules. We fabricated natural/synthetic hybrid films using 0, 10, 20, 40 and 80 wt% of silk fibroin. Schwann cells (SCs) were seeded on PLGA/silk fibroin hybrid films and confirmed the effects of adhesion and proliferation on SCs according to the content of silk fibroin. In this study, we confirmed PLGA/silk fibroin hybrid film containing 40% and 80% of silk fibroin interrupted adhesion and proliferation of SCs. Films containing 10% and 20% of silk, however, provided suitable environment for growth and proliferation of SCs. These results suggest that silk fibroin provides suitables surface to neural cells and its proper content provides proper culture conditions to improve cell adhesion and proliferation.

PLGA는 미국 식품의약품안전청의 승인을 받은 합성고분자로서 생체재료로 널리 쓰이며, 실크피브로인은 세포친화성 및 우수한 기계적 특성으로 세포의 조직성장을 지지한다. 본 연구에서는 PLGA/실크피브로인 0, 10, 20, 40 및 80 wt% 하이브리드 필름을 제조하였고 함량별 슈반세포의 최적환경을 설정하고자 하였다. DSC결과 PLGA/실크피브로인 필름이 in vivo 적용시 열적으로 안정할 것으로 사료되었다. 접촉각 측정을 통해 PLGA/실크피브로인 10 및 20 wt% 필름이 세포 분화 및 증식에 적합할 것으로 사료되며 RT-PCR과 SEM 결과로부터 PLGA에 10 및 20 wt%의 실크피브로인을 함유한 필름에서 슈반세포의 우수한 부착거동 및 형태유지를 확인하였다. 또한 WST 결과 10 wt% 실크피브로인 함량에서 높은 증식률이 확인되었다. 결과적으로 PLGA/실크피브로인 10 및 20 wt% 필름이 세포에 알맞은 상호관계를 제공해 긍정적으로 작용함을 확인하였다.

Keywords

References

  1. N. Zhang, H. Yan, and X. Wen, Brain Res. Rev., 49, 48 (2005). https://doi.org/10.1016/j.brainresrev.2004.11.002
  2. J. Palace, J. Neurol. Sci., 265, 21 (2008). https://doi.org/10.1016/j.jns.2007.08.039
  3. R. Jandial, I. Singec, V. J. Duenas, A. L. Ho, M. L. Levy, and E. Y. Snyder, Inter. Congress Series, 1302, 154 (2007). https://doi.org/10.1016/j.ics.2007.02.062
  4. C. D. Mills, A. J. Allchorne, and R. S. Griffin, Mol. Cell. Neurosci., 36, 185 (2007). https://doi.org/10.1016/j.mcn.2007.06.011
  5. M. Nissinen, H. Honkanen, O. Lahti, M. Kangas, J. Peltonen, and S. Peltonen, Mol. Cell. Neurosci., 37, 568 (2008). https://doi.org/10.1016/j.mcn.2007.12.005
  6. T. Imaizumi, K. L. Lankford, and J. D. Kocsis, Brain Res., 854, 70 (2000). https://doi.org/10.1016/S0006-8993(99)02285-4
  7. G. H. Doherty, C. Oldreive, and J. Harvey, Neurosci., 154, 1297 (2008). https://doi.org/10.1016/j.neuroscience.2008.04.052
  8. D. P. Yang, D. P. Zhang, and K. S. Mak, Mol. Cell. Neurosci., 38, 80 (2008). https://doi.org/10.1016/j.mcn.2008.01.017
  9. L. B. Dahlin, Current Orthopaedics, 22, 9 (2008). https://doi.org/10.1016/j.cuor.2008.01.002
  10. C. Cheng, C. A. Webber, J. Wang, Y. Xu, J. A. Martinez, W. Q. Liu, D. McDonald, G. F. Guo, M. D. Nguyen, and D. W. Zochodne, Exp. Neurol., 212, 358 (2008). https://doi.org/10.1016/j.expneurol.2008.04.023
  11. G. Khang, S. K. Kim, and K. D. Hong, Tissue Eng. Regen. Med., 1, 136 (2004).
  12. J. Caddick, P. J. Kingham, and N. J. Gardiner, Glia, 54, 840 (2006). https://doi.org/10.1002/glia.20421
  13. B. Movaghara, T. Tiraihia, and S. A. Mesbah-Naminb, Cell Biol. Int., 30, 569 (2006). https://doi.org/10.1016/j.cellbi.2006.02.007
  14. N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Biophys. Res. Commun., 208, 511 (1995). https://doi.org/10.1006/bbrc.1995.1368
  15. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003). https://doi.org/10.1016/S0142-9612(02)00353-8
  16. J. Chen, G. H. Altman, V. Karageorgiou, R. Horan, A. Collette, and V. Volloch, J. Biomed. Mater. Res., 67, 559 (2003).
  17. H. J. Jin and D. L. Kaplan, Nature, 424, 1057 (2003). https://doi.org/10.1038/nature01809
  18. H. J. Jin, S. V. Fridrikh, and G. C. Rutledge, Biomacromolecules, 3, 1233 (2002). https://doi.org/10.1021/bm025581u
  19. L. Meinel, O. Betz, R. Fajardo, S. Hofmann, and A. Nazarian, Bone, 39, 4 (2006).
  20. L. Uebersaxa, M. Mattottia, and M. Papaloizosb, Biomaterials, 28, 30 (2007).
  21. M. Garcia-Fuentesa, A. J. Meinela, M. Hilbeb, L. Meinela, and H. P. Merkle, Biomaterials, 30, 28 (2009).
  22. E. J. Kim, J. H. Song, and M. S. Kim, Tissue Eng. Regen. Med., 1, 41 (2004).
  23. G. Khang, E. K. Jeon, and J. M. Rhee, Macromol. Res., 11, 334 (2003). https://doi.org/10.1007/BF03218373
  24. P. J. Kingham, D. F. Kalbermatten, D. Mahay, S. J. Armstrong, M. Wiberg, and G. Terenghi, Exp. Neurol., 207, 267 (2007). https://doi.org/10.1016/j.expneurol.2007.06.029
  25. J. W. Jang, K. S. Park, and S. H. Kim, Tissue Eng. Regen. Med., 2, 34 (2005).
  26. G. Khang, J. H. Jeon, and J. C. Cho, Polymer(Korea), 23, 471 (1999).
  27. G. Khang, M. S. Kim, and S. H. Cho, Tissue Eng. Regen. Med., 1, 9 (2004).
  28. S. Sagnella, E. Anderson, N. Sanabria, R. E. Marchant, and K. Marchant, Tissue Eng., 11, 226 (2005). https://doi.org/10.1089/ten.2005.11.226
  29. Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials, 20, 2185 (1999). https://doi.org/10.1016/S0142-9612(99)00123-4
  30. G. S. Khang, M. S. Kim, B. H. Min, I. W. Lee, J. M. Rlee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 376 (2006).
  31. T. K. Morrissey, N. K. Leitman, and R. P. Bunge, J. Neurosci., 11, 2433 (1991).
  32. H. Liu, H. Fan, Y. Wang, S. L. Toh, and J. C. Goh, Biomaterials, 29, 662 (2008). https://doi.org/10.1016/j.biomaterials.2007.10.035
  33. K. S. Park, S. M. Kim, M. S. Kim, I. W. Lee, J. Lee, H. B. Lee, and G. Khang, Polymer(Korea), 30, 445 (2006).
  34. A. Y. Oh, S. H. Kim, S. J. Lee, J. Yoo, V. D. Mark, J. M. Rlee, and G. Khang, Polymer(Korea), 32, 403 (2008).
  35. C. Li, C. Vepari, H. Jina, H. J. Kim, and D. L. Kaplan, Biomaterials, 27, 3115 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.022