Properties of PP/MWCNT Nanocomposite Using Pellet-Shaped MWCNT

펠렛형 MWCNT를 사용한 PP/MWCNT 나노복합체 물성 연구

  • Jeong, Dong-Seok (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Nam, Byeong-Uk (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 정동석 (한국기술교육대학교 응용화학공학과) ;
  • 남병욱 (한국기술교육대학교 응용화학공학과)
  • Received : 2010.07.05
  • Accepted : 2010.10.15
  • Published : 2011.01.25

Abstract

Polypropylene/multi-walled carbon nanotube(PP/MWCNT) composites along with various MWCNT contents up to 20 wt% were prepared by a twin screw extruder. Nanocomposites having 20 wt% MWCNT as a master batch(M/B) were diluted with PP by way of melt compounding. The electrical/thermal conductivity, morphology, thermal/viscoelastic/mechanical properties were investigated with the variation of MWCNT contents. Also, we compared some properties between 1-step PP/MWCNT and the diluted PP/MWCNT composites. The percolation threshold of electrical and thermal conductivity was measured at about 3 wt% MWCNT. And conductivity of diluted PP/MWCNT composites were superior to those of PP/MWCNT composites. The non-isothermal crystallization temperature and thermal decomposition temperature appeared at higher temperatures with increasing MWCNT contents. Morphology showed that length of MWCNT in diluted PP/MWCNT composites was shortened by twice melt blending, which contributed to improve the tensile strength of PP/MWCNT composites.

본 연구에서는 폴리프로팔렌(PP)/다중벽 탄소나노튜브(MWCNT) 복합체를 이축압출기를 사용하여 펠렛형 MWCNT를 20wt%까지 함량별로 제조하고, MWCNT가 20 wt% 첨가된 복합체를 마스터배치(M/B)로 사용하여 다시 PP와 컴파운딩하여 희석하였다. PP/MWCNT 복합체는 함량 변화에 따라 전기전도도 열전도도, 모폴로지, 열적, 고체 점탄성, 기계적 성질을 조사하였고, 또한 희석된 PP/MWCNT 복합체와 1 단계 PP/MWCNT 복합체 간의 물성을 비교하였다. 전기전도도와 열전도도는 MWCNT의 함량이 3 wt% 일 때 percolation threshold 현상을 보였고 M/B로 제조된 복합체가 더 우수한 전도도를 보였다. 복합체의 MWCNT 함량이 증가하면 비등온 결정화 온도 및 열분해 온도가 증가하였다. 모폴로지를 통하여 M/B로 제조된 복합체의 MWCNT 길이가 짧아진 것을 확인하였고, 이는 기계적 물성의 향상에 도움을 준 것으로 나타났다.

Keywords

References

  1. S. Ijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. A. Samakande, P. C. Hartmann, V. Cloete, and R. D. Sanderson, Polymer, 48, 1490 (2007). https://doi.org/10.1016/j.polymer.2006.07.072
  3. C. A. Cooper, D. Ravich, D. Lips, J. Mayer, and H. D. Wagner, Compos. Sci. Technol., 62, 1105 (2002). https://doi.org/10.1016/S0266-3538(02)00056-8
  4. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123, 3838 (2001). https://doi.org/10.1021/ja010172b
  5. P. Potschke, M. Abdel-Goad, I. Alig, S. Dudkim, and D. Lellinger, Polymer, 45, 8863 (2004). https://doi.org/10.1016/j.polymer.2004.10.040
  6. Y. K. Lee, S. H. Jang, M. S. Kim, W. N. Kim, H. G. Yoon, S. D. Park, S. T. Kim, and J. D. Lee, Macromol. Res., 18, 241 (2010). https://doi.org/10.1007/s13233-010-0309-3
  7. J. P. Salvetat, A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro', Phys. Rev. Lett., 82, 944 (1999). https://doi.org/10.1103/PhysRevLett.82.944
  8. D. O. Kim and J. D. Nam, Prospectives of Industrial Chemistry, 9, 3 (2006).
  9. P. Poetschke, A. R. Bhattacharyya, A. Janke, and H. Goering, Compos. Interfaces, 10, 389 (2003). https://doi.org/10.1163/156855403771953650
  10. T. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, Macromolecules, 37, 7214 (2004). https://doi.org/10.1021/ma049132t
  11. W. D. Zhang, L. Shen, I. Y. Phang, and T. Liu, Macromolecules, 37, 256 (2004). https://doi.org/10.1021/ma035594f
  12. A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, Polymer, 44, 2373 (2003). https://doi.org/10.1016/S0032-3861(03)00073-9
  13. E. J. Siochi, D. C. Working, C. Park, P. T. Lillehei, J. H. Rouse, C. C. Topping, A. R. Bhattacharyya, and S. Kumar, Composites, Part B: Engineering, 35, 439 (2004).
  14. A. Star, Y. Liu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai, and J. R. Heath, Macromolecules, 36, 553 (2003). https://doi.org/10.1021/ma021417n
  15. Y. J. Kang and T. A. Taton, J. Am. Chem. Soc., 125, 5650 (2003). https://doi.org/10.1021/ja034082d
  16. K. Prashantha, J. Soulestin, M. F. Lacrampe, M. Claes, G. Dupin, and P. Krawczak, Polym. Lett., 2, 735 (2008). https://doi.org/10.3144/expresspolymlett.2008.87
  17. D. McIntosh, V. N. Khabashesku, and E. V. Barrera, Chem. Mater., 18, 4561 (2006). https://doi.org/10.1021/cm060513q
  18. Z. Zhou, S. Wang, L. Lu, Y. Zhang, and Y. Zhang, J. Polym. Sci. Part B: Polym. Phys., 45, 1616 (2007). https://doi.org/10.1002/polb.21128
  19. L. Vaisman, G. Marom, and H. D. Wagner, Adv. Funct. Mater., 16, 357 (2006). https://doi.org/10.1002/adfm.200500142
  20. M. A. Lopez Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, Carbon, 43, 1499 (2005). https://doi.org/10.1016/j.carbon.2005.01.031
  21. D. Shi, J. Lian, P. He, L. M. Wang, F. Xiao, L. Yang, M. J. Schultz, and D. B. Mast, Appl. Phys. Lett., 83, 5301 (2003). https://doi.org/10.1063/1.1636521
  22. T. Zeng, Trans. ASME, 123, 340 (2001). https://doi.org/10.1115/1.1351169
  23. G. Chen, Int. J. Therm. Sci., 39, 471 (2003).
  24. S. W. Kim, J. G. Kim, S. J. Park, and S. H. Lee, The Korean Physical Society, 49, 412 (2004).
  25. T. H. Cho, S. D. Park, Y. S. Lee, and I. H. Baek, Korean Chem. Eng. Res., 42, 624 (2004).
  26. J. Jin, M. Song, and F. Pan, Thermochim. Acta, 456, 25 (2007). https://doi.org/10.1016/j.tca.2007.02.003
  27. R. Haggenmueller, J. E. Fischer, and K. I. Winey, Macromolecules, 39, 2964 (2006). https://doi.org/10.1021/ma0527698
  28. E. J. Clark and J. D. Hoffmann, Macromolecules, 17, 878 (1984). https://doi.org/10.1021/ma00134a058
  29. X. Chen, K. H. Yoon, C. Burger, I. Sics, D. Fang, B. S. Hsiao, and B. Chu, Macromolecules, 38, 3883 (2005). https://doi.org/10.1021/ma047978r
  30. Y. Q. Xue, T. A. Tervoort, and P. J. Lemstra, Macromolecules, 31, 3075 (1998). https://doi.org/10.1021/ma970544u
  31. J. H. Ko, J. C. Kim, and J. H. Chang, Polymer(Korea), 33, 97 (2009).