DOI QR코드

DOI QR Code

Precipitation of Icosahedral Qusicrystal Phase in Mg-Zn-Y(ZW61) alloy

Mg-Zn-Y(ZW61) 합금에서 Icosahedral 준결정상의 석출

  • Kwak, Ho-Yeon (Department of Nano Materials Engineering, Chungnam National university) ;
  • Lee, Kap-Ho (Department of Nano Materials Engineering, Chungnam National university)
  • 곽호연 (충남대학교 나노소재공학과) ;
  • 이갑호 (충남대학교 나노소재공학과)
  • Received : 2011.01.18
  • Accepted : 2011.02.13
  • Published : 2011.03.27

Abstract

Precipitation of the ordered icosahedral quasicrystal in Mg-6wt%Zn-1wt%Y alloy has been characterized by transmission electron microscopy observations. The lamellar-type icosahedral qusicrystal phases (I-phase) with the face-centered icosahedral (FCI) structure are observed in alloy after solution treatment at $550^{\circ}C$. In the alloy annealed at $400^{\circ}C$, polygon-shaped I-phases are observed in the ${\alpha}$-Mg matrix. The interfaces of the I-phase with the matrix are facetted and the facets are on five-fold and two- fold plane of the I-phase. The orientation relationship of the I-phase with the matrix is determined to be $[I5]_I//[001]_{Mg}$, $(2f)_I//(2\overline{1}0)_{Mg}$ and $[I2]_I//[311]_{Mg}$, $(5f)_I//(0\overline{1}1)_{Mg}$. The icosahedral grains are occasionally found to be twinned with one of the five-fold axis as the twin axis. The twin boundaries appear to be fairly straight and perpendicular to the fivefold twin axis. The icosahedral twin can be expressed as a rotation of $63.4^{\circ}$ or $116.62^{\circ}$ around two fold zone axis.

Keywords

References

  1. M. X. Zang and P. M. Kelly, Scripta Mater., 48, 379 (2003). https://doi.org/10.1016/S1359-6462(02)00457-8
  2. J. F. Nie, Scripta Mater., 48, 1009 (2003). https://doi.org/10.1016/S1359-6462(02)00497-9
  3. Z. P. Luo, S. Q. Zhang, Y. L. Tang and D. S. Zhao, Scripta Metall. Mater., 32, 1411 (1995). https://doi.org/10.1016/0956-716X(95)00180-4
  4. D. H. Bae, S. H. Kim, D. H. Kim and W. T. Kim, Acta Mater., 50, 2343 (2002). https://doi.org/10.1016/S1359-6454(02)00067-8
  5. A. Singh, M. Nakamura, M. Watanabe, A. Kato and A. P. Tsai, Scripta Mater., 49, 417 (2003). https://doi.org/10.1016/S1359-6462(03)00305-1
  6. W. J. Kim, S. I. Hong and K. H. Lee, Metals and Materials Int., 16, 171 (2010). https://doi.org/10.1007/s12540-010-0403-2
  7. F. S. Pierce, S. J. Poon and Q. Guo, Seience, 261, 737 (1993). https://doi.org/10.1126/science.261.5122.737
  8. Z. Luo, S. Zhang, Y. Tang and D. Zhao, Scripta Metall. Mater., 28, 1513 (1993). https://doi.org/10.1016/0956-716X(93)90584-F
  9. Z. P. Luo, S. Q. Zhang, Y. L. Tang and D. S. Zhao, Scripta Metall. Mater., 32, 1411 (1995). https://doi.org/10.1016/0956-716X(95)00180-4
  10. S. Ebalard and F. Spaepen, J. Mater. Res., 4, 39 (1989). https://doi.org/10.1557/JMR.1989.0039
  11. I. J. Kim, D. H. Bae and D. H. Kim, Mater. Sci. Eng., A359, 313 (2003).
  12. S. Y. Baek, K. H. Lee and T. S. Kim, Kor. J. Mater. Res., 18(7), 362 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.7.362
  13. A. Singh, A. P. Tsai, M. Nakamura, M. Watanabe and A. Kato, Phil. Mag. Lett., 83(9), 543 (2003). https://doi.org/10.1080/09500830310001597027
  14. A. Singh, M. Watanabe, A. Kato and A. P. Tsai, Mater. Sci. Eng., A397, 22 (2005).
  15. A. Singh, M. Watanabe, A. Kato and A. P. Tsai, Acta Mater., 53, 4733 (2005). https://doi.org/10.1016/j.actamat.2005.06.026
  16. D. Shechtman, I. Blech, D. Garatias, J. W. Cahn, Phys. Rev. Lett., 53, 1951 (1984). https://doi.org/10.1103/PhysRevLett.53.1951
  17. V. Elser, Phys. Rev., B32, 4892 (1985).
  18. J. W. Cahn, D. Shechtman and D. Gratias, J. Mater. Res., 1, 13 (1986). https://doi.org/10.1557/JMR.1986.0013
  19. K. Hiraga, J. Electron Microsc., 40, 81 (1991).
  20. A. Niikura, A. P. Tsai, A. Inoue and T. masumoto, Phil. Mag. Lett., 69(6), 351 (1994). https://doi.org/10.1080/09500839408242444

Cited by

  1. Effect of Al Addition on the Precipitation Behavior of a Binary Mg-Zn Alloy vol.22, pp.3, 2012, https://doi.org/10.3740/MRSK.2012.22.3.111