DOI QR코드

DOI QR Code

Development of salt-tolerant transgenic chrysanthemum (Dendranthema grandiflorum) lines and bio-assay with a change of cell specificity

내염성 국화 형질전환 계통 육성 및 저항성 검정과 세포특성 변화

  • Kang, Chan-Ho (Crop development team, Jeollabukdo Agricultural Research & Extension Services) ;
  • Yun, Seung-Jung (Division of Biological Resources Science, Chonbuk National University) ;
  • Han, Bum-So (National Academy of Agricultural Science, Rural Developement Administration) ;
  • Lee, Gong-Joon (Crop development team, Jeollabukdo Agricultural Research & Extension Services) ;
  • Choi, Kyu-Hwan (Crop development team, Jeollabukdo Agricultural Research & Extension Services) ;
  • Park, Jong-Suk (Crop development team, Jeollabukdo Agricultural Research & Extension Services) ;
  • Shin, Yong-Kyu (Crop development team, Jeollabukdo Agricultural Research & Extension Services)
  • 강찬호 (전라북도농업기술원 작목개발팀) ;
  • 윤성중 (전북대학교 생물자원과학부) ;
  • 한범수 (농촌진흥청 국립농업과학원 기능성물질개발과) ;
  • 이공준 (전라북도농업기술원 작목개발팀) ;
  • 최규환 (전라북도농업기술원 작목개발팀) ;
  • 박종숙 (전라북도농업기술원 작목개발팀) ;
  • 신용규 (전라북도농업기술원 작목개발팀)
  • Received : 2010.11.12
  • Accepted : 2010.12.15
  • Published : 2011.03.31

Abstract

Recently the increasing of vinyl and green houses and development of reclaimed land including Saemangeum induced the need for breeding salt-tolerant crops which can survive and grow in high salinity soil. So we try to develop salt-tolerant transgenic chrysanthemum (Dendranthema grandiflorum.) lines by using anti-porter gene TANHX and HVNHX. Through marker selection and plant regeneration step, we could get 284 putative transgenic chrysanthemum lines. On selected putative transgenic plants, 40 candidates were used for genetic analysis and 30 lines could be made up of target size band on PCR, so about 75% of marker selected lines were decided as real transgenic lines. Selected 284 transgenic lines were also used for salt-tolerance test as a range of NaCl 0.2 ~ 1.2% (300 mM). As a result of salt-tolerance test, 15 selected transgenic lines could live and grow on the continuous supply of 0.8% (200 mM) NaCl solution and another 7 lines were could survive under 1.2% (300 mM) NaCl solution. This salt-tolerant transgenic lines under salt stress also lead a cell alternation especially a guard cell. A stressed guard cell be swelled and grow larger in proportion to NaCl concentration. TTC test for cell viability on transgenic chrysanthemum lines pointed out that more strong salt-tolerant lines can be live more than another under same salt stress. The numerical value of strong salt-tolerant 7 transgenic lines were 0.206 ~ 0.331 under 1.2% NaCl stress, and then it's value is more larger than middle salinity lines' 0.114 ~ 0.193 and non-transgenic's 0.046. And the proline contents as indicated stress compound also pointed out that HVNHX introduced salt-tolerant transgenic lines were less stressed than other under same salt stress. The contents of strong salt-tolerant transgenic lines were 2.255 ~ 2.638 mg/kg and it is much higher than that of middle salinity lines' 1.496 ~ 2.125.

최근 시설재배의 증가나 새만금 간척지의 개발 등 염류 농도가 높은 토양에서의 작물 재배에 대한 수요가 점차적으로 증가하고 있는 상황에서 고염환경 하에서 세포내로 주입된 염 분자를 제한된 구역으로 격리하여 염류내성을 주도록 하는 anti-porter 유전자 TANHX, HVNHX를 우리나라 주요 화훼작물이며 수출유망 작물인 국화로 도입하는 분자육종이 백마 등 5품종에 대하여 이루어졌다. 선발 마커를 이용한 배지선발 과정을 통하여 선발된 기내 식물체 390개체를 대상으로 토양 순화를 거쳐 284계통의 국화 형질전환체가 획득되었으며, 얻어진 식물체 중 임의로 40계통을 선발하고 PCR을 거쳐 진성 여부를 확인한 결과 30계통에서 target band가 검출되어 75%의 배지 발 성공률을 나타내었다. PCR 분석 선발 계통을 포함하여 토양 순화된 284계통을 대상으로 직접적으로 NaCl 0.2 ~ 1.2% (300 mM) 범위로 내염성 생물검정을 실시한 결과 NaCl 0.8% (200 mM) 농도에서도 생존 및 생장이 가능한 15계통이 선발되었으며 이중 7계통은 NaCl 1.2%(300 mM) 내에서도 생존이 가능하였다. 내염성 특성형질 도입을 위하여 anti-porter 유전자 HVNHX가 도입되어 선발된 형질전환 계통의 스트레스 저항성 정도 및 세포 형태적 특성변화가 관찰되었다. 선발된 계통은 NaCl 1.2% (300 mM) 처리 생존가능 7계통을 포함하여 NaCl 0.8% (200 mM) 관수 처리 하에서 생존 및 생장이 가능한 15계통이었다. 세포형태 특성은 전자현미경 (SEM)을 이용하여 형질전환체 및 비 형질전환체의 공변세포를 염 처리 후 관찰함으로서 이루어졌는데 형질전환체, 비형질전환체 모두 무처리에 비해 NaCl 처리한 식물체의 공변세포의 두께가 두꺼워지고 조직 치밀도가 증가하였으며 형질전환체의 경우 비 형질전환체에 비해 두꺼워지는 정도나 조직의 치밀도 증가 정도가 높아 염에 대한 내성이 강화되었음을 알 수 있었고 염 처리 후 세포의 생존정도 비교를 통한 내염 스트레스에 대한 저항성 정도를 측정하고자 TTC 검정을 실시한 결과 강 내염성 계통의 TTC 수치가 높게 나왔으며 NaCl 처리 농도가 높아질수록 TTC 수치가 낮아지는 경향이었으나 강 내염성 7계통은 1.2% NaCl 처리에서도 0.206 ~ 0.331로 비형질전환체의 0.046 중내염성 계통의 0.114 ~ 0.193에 비해 높은 세포생존 비율을 나타내었다. 또한 식물이 스트레스에 대항하기 위하여 분비하는 아미노산인 Proline의 함량을 계통별로 측정한 결과 강 내염성 형질전환 계통이 높게 나왔으며 NaCl 처리 농도가 높아질수록 증가하는 경향을 나타내어 강 내염성 7계통은 1.2% NaCl 처리에서 2.255 ~ 2.638 mg/kg로 중 내염성 형질전환 계통의 1.496 ~ 2.125에 비해 높게 형성되었다.

Keywords

References

  1. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256-1258 https://doi.org/10.1126/science.285.5431.1256
  2. Ashraf M (1999) Breeding for salinity tolerance proteins in plants. Crit Rev Plant Sci 13:17-42
  3. Aspinall D, Paleg LG (1981) Proline accumulation, physiological aspects. In: The physiology and biochemistry of drought resistance in plants. Paleg LG and Aspinall D (Ed.). Academic Press New York 206-240
  4. Boyer JS (1982) Plant productivity and environment. Science 218:443-448 https://doi.org/10.1126/science.218.4571.443
  5. Cough SJ, Bent A (1988) A simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735-743
  6. Fariba A, Ali AE (2005) Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal of Biochemistry and Biotechnology 1(4):212-216 https://doi.org/10.3844/ajbbsp.2005.212.216
  7. Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35-42 https://doi.org/10.1023/A:1010603222673
  8. Han BH, Suh EJ, Lee SY, Shin HK, Lim YP (2007) Selection of non-branching lines induced by introducing Ls-like cDNA into chrysanthemum (Dendranthema ${\times}$ grandiflorum (Ramat.) Kitamura) "Shuho-no-chikara". Scientia Horticulturae 115: 70-75 https://doi.org/10.1016/j.scienta.2007.07.012
  9. Hare PD, Cress WAJ, Staden V (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535-554 https://doi.org/10.1046/j.1365-3040.1998.00309.x
  10. Iborra JL, Guardiola J, Montaner S, Canovas M, Manjon A (1992) 2,3,5-triphenyltetrazolium chloride as a viability assay for immobilized plant cells. Biotechnology Techniques 6:319-322 https://doi.org/10.1007/BF02439319
  11. Kubo T, Tsuro M, Tsukimori A, Shizukawa Y, Takemoto T, Inaba K, Shiozaki S (2006) Morphological and physiological changes in transgenic chrysanthemum morifolium Ramat. 'Ogura-nishiki' with rolC. Journal of the Japanese Society for Horticultural Science 75:312-317 https://doi.org/10.2503/jjshs.75.312
  12. Lim PO, Kim YM, Breeze E, Koo JC, Woo HR, Ryu JS, Park DH, Beynon J, Tabrett A, Buchanan Wollaston V, Nam HG (2007) Overexpression of a chromatin architecture-controlling AThook protein extends leaf longevity and increases the postharvest storage life of plants. The Plant Journal 52:1140-1153 https://doi.org/10.1111/j.1365-313X.2007.03317.x
  13. Lutts S, Kinet JM, Bouharmon J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity tolerance. Plant Growth Regul 19:207-218 https://doi.org/10.1007/BF00037793
  14. Mitiouchkina TY, Dolgov SV (2000) Modification of chrysanthemum plant and flower architecture by rol C gene from Agrobacterium rhizogenesis induction. Acta Hort 508:163-169
  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Nass R, Cunningham KW, Rao R (1997) Intra-cellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. Insights into mechanisms of sodium tolerance. J Biol Chem 272: 26145-26152 https://doi.org/10.1074/jbc.272.42.26145
  17. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letter 532:279-282 https://doi.org/10.1016/S0014-5793(02)03679-7
  18. Sasidharanpillai VK, Rachel WM, Vanga SR, Basuthkar JR, Manchikatla VR (2004) genetic transformation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731-738 https://doi.org/10.1016/j.plantsci.2003.11.012
  19. Shi HZ, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543-550 https://doi.org/10.1023/A:1019859319617
  20. Takatsu Y, Nishizawa Y, Hibi T, Akutsu T (1999) Transgenic chrysanthemum (Dendrantherma grandiflorum) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cineria). Sci Hort 82:113-123 https://doi.org/10.1016/S0304-4238(99)00034-5
  21. Tan CP, Qin S, Zhang Q, Jiang P, Zhao FQ (2005) Establishment of a micro-Particle bombardment transformation system for Dunaliella salina. The Journal of Microbiology 43:361-365
  22. Tian L, Huang CL, Yu R, Liang RF, Li ZL, Zhang LS, Ang YQ, Zhang XH, Wu ZG (2006) Overexpression AtNHX1 confers salt-tolerance of transgenic tall fescue. African Journal of Biotechnology 5(11):1041-1044
  23. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832-12836 https://doi.org/10.1073/pnas.231476498

Cited by

  1. The Effects of Plant Growth Regulators on Plant Regeneration and Direct Shoots Formation of Petal Explants of Chrysanthemum Flower Color Mutants Varieties, 'ARTI-purple' and 'ARTI-queen' vol.31, pp.3, 2013, https://doi.org/10.7235/hort.2013.12219