DOI QR코드

DOI QR Code

Effects of Various Factors on the Durability of Pellets Fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust

낙엽송 및 백합나무 톱밥으로 제조한 펠릿의 내구성에 미치는 영향인자

  • Lee, Soo-Min (Division of Bioenergy, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Choi, Don-Ha (Division of Bioenergy, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Cho, Seong-Taek (Division of Bioenergy, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Nam, Tae-Hyun (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Han, Gyu-Seong (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Yang, In (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University)
  • 이수민 (국립산림과학원 녹색자원이용부 바이오에너지연구과) ;
  • 최돈하 (국립산림과학원 녹색자원이용부 바이오에너지연구과) ;
  • 조성택 (국립산림과학원 녹색자원이용부 바이오에너지연구과) ;
  • 남태현 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 한규성 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 양인 (충북대학교 농업생명환경대학 목재종이과학과)
  • Received : 2011.03.11
  • Accepted : 2011.05.18
  • Published : 2011.05.25

Abstract

This study was conducted to investigate the effects of sawdust size and moisture content, pelletizing temperature and time on the durability of the pellets fabricated with larch and tulip tree sawdust. The durability of larch-pellet was significantly higher than that of tulip tree-pellet. For the larch-pellets, the durability of the pellets fabricated with > 18 mesh sawdust was higher than that of 8~18 mesh sawdust. With the increases of pelletizing temperature and time, the durabilities of larch- and tulip tree-pellets steadily improved. The durabilities of larch- and tulip tree-pellets also increased as the moisture content of sawdust increased. In the comparison of durabilities between commercial pellets and larch- or tulip tree-pellets, the pellets fabricated with larch and tulip tree sawdusts in our study were less denser than commercial pellets, but the durability of most larch-pellets was satisfied with the 1st-grade pellet standard designated by Korea Forest Research Institute. In addition, the durability of tulip tree-pellets were higher than that of the 3rd-grade pellet standard. From the scanning electron microscopic observation of larchand tulip tree-pellets, the gap between the sawdusts of each pellet was reduced with the increases of pelletizing temperature and time. In particular, it was visually confirmed that the surface of the pellets made with the pelletizing temperature of $180^{\circ}C$ for 3 min did not differ from that of commercial pellets.

본 연구는 낙엽송과 백합나무 톱밥을 이용한 펠릿의 제조 과정에서 톱밥의 크기 및 함수율, 펠릿제조 온도 및 성형시간이 펠릿의 내구성에 미치는 영향을 알아보기 위하여 수행하였다. 수종별 내구성의 비교에서 낙엽송 펠릿의 내구성이 백합나무 펠릿보다 높았으며, 낙엽송 펠릿의 경우 18 mesh (1.00 mm) 이상 크기의 톱밥으로 제조한 펠릿이 8~18 mesh (1.00~2.38 mm)의 톱밥으로 제조한 펠릿보다 내구성이 높았다. 펠릿제조 온도를 높이고 펠릿 성형시간을 연장함에 따라 펠릿의 내구성은 증가하였으며, 톱밥의 함수율이 올라감에 따라 펠릿의 내구성은 향상되는 것으로 나타났다. 한편, 본 연구에서 제조된 낙엽송 및 백합나무 펠릿은 대조구로 사용된 산림조합 및 일도에서 제조한 목재 펠릿보다 내구성은 낮았으나, 대부분의 낙엽송 펠릿은 국립산림과학원에서 고시한 목재펠릿의 내구성 1등급 기준(97.5%)을 만족하였으며, 백합나무 펠릿은 3등급 기준(95%)을 모두 상회하였다. 전자현미경을 이용한 펠릿의 관찰에서 펠릿제조 온도를 높이고 펠릿 성형시간을 연장함에 따라 펠릿내에서 톱밥 간의 거리가 감소하고, 특히 $180^{\circ}C$의 온도에서 3분의 성형시간으로 제조한 펠릿의 경우 대조구 시편과 크게 차이가 없는 것을 육안으로 확인할 수 있었다.

Keywords

References

  1. 류재윤, 강찬영, 이응수, 서준원, 이현종, 박헌. 2010. 국내산 낙엽송의 톱밥 유형에 따른 펠릿특성에 관한 연구. 목재공학 38(1): 49-55.
  2. Li, Y. and H. Liu. 2000. High-pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy 19: 177-186. https://doi.org/10.1016/S0961-9534(00)00026-X
  3. Obernberger I. and G. Thek. 2004. Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy 27: 653-669. https://doi.org/10.1016/j.biombioe.2003.07.006
  4. Lehtikangas, P. 2001. Quality properties of pelletised sawdust, logging residues and bark. Biomass and Bioenergy 20: 351-360. https://doi.org/10.1016/S0961-9534(00)00092-1
  5. 권성민, 조재현, 이성재, 권구중, 황병호, 이귀현, 한규성, 차두송, 김남훈. 2007. 산불피해 소나무재의 목질펠릿으로의 이용가능성 평가. 목재공학 35(4): 14-20.
  6. 권구중, 권성민, 차두송, 김남훈. 2010. 목타르와 톱밥을 혼합하여 제조한 펠릿의 특성. 목재공학 38(1): 36-42.
  7. Kaliyan, N. and R. B. Morey. 2009. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy 33: 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005
  8. Mani, S., L. G. Tabil, and S. Sokhansanj. 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy 20: 648-654.
  9. Bergstrom, D., S. Israelsson, M. Ohman, S. Dahlqvist, R. Gref, C. Boman, and I. Wasterlund. 2008. Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel processing Technology 89: 1324-1329. https://doi.org/10.1016/j.fuproc.2008.06.001
  10. Stakl, M., K. Granstrom, J. Berghel, and R. Renstorm. 2004. Industrial process for biomass drying and their effects on the quality properties of wood pellets. Biomass and Bioenergy 27: 621-628. https://doi.org/10.1016/j.biombioe.2003.08.019
  11. 한규성, 최돈하. 2002. 포플러로부터 고밀화연료의 제조. 임산에너지 21(3): 59-65.
  12. 한규성, 여진기. 2003. 고밀화에 의한 현사시 톱밥의 고형 연료화. 임산에너지 22(2): 54-59.
  13. 국립산림과학원. 2009. 목질펠릿 품질 규격. 국립산림과학원 고시 제 2009-2호.
  14. ASABE. 2003. Cubes, pellets and crumbles - definitions and methods for determining density, durability and moisture content. ASABE Standards, St. Joseph, MI: 269.
  15. Statistical Aanalysis System Institute. 2002. SAS/STAT, User’s guide. Cary, NC: 55-80.
  16. 한규성, 김병로. 2006. 목질펠릿으로 제조한 탄화물의 특성. 목재공학 34(3): 15-21.
  17. White, R. H. 1987. Effect of lignin content and extractives on th higher heating value of wood. Wood and Fiber Science 19(4): 446-452.
  18. Dhamodaran, T. K., R. Gnanaharan, and P. K. Thulasidas. 1989. Calorific value variation in coconut stem wood. Wood Sci. Technol. 23: 21-26. https://doi.org/10.1007/BF00350603
  19. Cordero, T., F. Marquez, J. Rodriguez-Mirasol, and J. Rodriguez. 2001. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80: 1567-1571. https://doi.org/10.1016/S0016-2361(01)00034-5
  20. Back, E. L. 1987. The bonding mechanism in hardboard manufacture. Holzforschung 41(4): 247-258. https://doi.org/10.1515/hfsg.1987.41.4.247

Cited by

  1. Effect of Diluted H2SO4and NaOH Treatment on Chemical Composition of Larch and Yellow Poplar vol.41, pp.4, 2013, https://doi.org/10.5658/WOOD.2013.41.4.358
  2. Wood Pellet Production using Domestic Forest Thinning Residues and their Quality Characteristics vol.41, pp.4, 2013, https://doi.org/10.5658/WOOD.2013.41.4.346
  3. Effect of the Addition of Binders on the Fuel Characteristics of Wood Pellets vol.41, pp.6, 2013, https://doi.org/10.5658/WOOD.2013.41.6.475
  4. Comparison of Quality Characteristics of Woodpellet Manufactured from Pinus densiflora S. et Z. and Pinus rigida Mill vol.43, pp.3, 2015, https://doi.org/10.5658/WOOD.2015.43.3.374
  5. Evaluating The Fuel Characteristics of Wood Pellets Fabricated with Wood Tar and Starch as An Additive vol.42, pp.3, 2014, https://doi.org/10.5658/WOOD.2014.42.3.318
  6. Effect of Torrefaction Condition on The Chemical Composition and Fuel Characteristics of Larch wood vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.122
  7. Effect of Sawdust Moisture Content and Particle Size on The Fuel Characteristics of Wood Pellet Fabricated with Quercus mongolica, Pinus densiflora and Larix kaempferi Sawdust vol.43, pp.6, 2015, https://doi.org/10.5658/WOOD.2015.43.6.757