DOI QR코드

DOI QR Code

Evaluation of Oxalic Acid Pretreatment Condition Using Response Surface Method for Producing Bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by Simultaneous Saccharification and Fermentation

바이오에탄올 생산을 위한 백합나무(Liriodendron tulipifera)칩의 동시당화발효 및 Response Surface Method를 이용한 옥살산 전처리 조건 탐색

  • Kim, Hye-Yun (Dept. of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Lee, Jae-Won (Dept. of Forest Products and Technology (BK 21 Program), Chonnam National University) ;
  • Jeffries, Thomas W. (Forest Products Laboratory, One Gifford Pinchod Drive) ;
  • Choi, In-Gyu (Dept. of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University)
  • 김혜연 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이재원 (전남대학교 농업생명과학대학) ;
  • ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2010.07.30
  • Accepted : 2011.11.04
  • Published : 2011.01.25

Abstract

The main purpose of this study is to evaluate the potential of producing bioethanol from yellow poplar ($Liriodendron$ $tulipifera$) wood chips by oxalic acid pretreatment and to examine the pretreatment conditions by response surface methodology (RSM). Based on $2^3$ factorial design, adjusted variables were reaction temperature ($^{\circ}C$), residence time (min), and acid loading (g/g), and a series of distinct 15 experimental conditions was organized with duplication at central point (total 16 performances). After pretreatment, simultaneous saccharification and fermentation (SSF) was subjected on solid fraction with yeast strain $Pichia$ $stipitis$. Maximum ethanol yields of the most samples were measured at 72 hours and applied to RSM as a dependent variable. 9.7 g/${\ell}$ of ethanol was produced from the solid pretreated at $180^{\circ}C$ for 40 min with 0.013 g/g of oxalic acid loading. According to the response surface methodology, it was determined that the temperature is the most governing factor via statistic analysis.

이 연구에서는 백합나무($Liriodendron$ $tulipifera$)를 옥살산으로 전처리한 시료로부터 에탄올 생산 가능성을 조사하고, response surface methodology (RSM)를 도입하여 전처리 조건을 분석하고자 한다. 산농도, 전처리 시간, 반응 온도를 조절하여 $2^3$ factorial central composite experimental design을 바탕으로 각기 다른 15가지의 전처리 조건에서 시험하였다(central point에서 2반복). 전처리 후 고체 시료는 발효 균주인 $Pichia$ $stipitis$를 사용하여 동시당화발효로 에탄올 생산에 이용되었으며, 각각의 시료에서의 72시간에서의 에탄올 생산량(y,g/${\ell}$)이 최대값으로, 종속변수로써 RSM에 적용되었다. $180^{\circ}C$에서 40분간 0.013 g/g의 옥살산으로 처리한 시료가 가장 많은 양의 에탄올(9.7 g/${\ell}$)을 생산하였으며, response surface methodology 분석에 따르면, 전처리 조건에서 온도 인자가 ethanol에 가장 큰 영향을 미치는 것으로 제시되었으며, 결과는 수식화되어 나타내었다.

Keywords

References

  1. 김혜연, 이재원, T. W. Jeffries, 곽기섭, 최인규. 2009. 바이오에탄올 생산에 적합한 백합나무(Linriodendron tulipifera)의 oxalic acid 전처리 효과 탐색. 목재공학 37(4): 397-405.
  2. Allen, S., D. Schulman, J. Lichwa, M. Antal Jr., E. Jennings, and R. Elander. 2001. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Industrial & Engineering Chemistry Research 40(10): 2352-2361. https://doi.org/10.1021/ie000579+
  3. Cara, C., E. Ruiz, J. Oliva, F. Saez, and E. Castro. 2008. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology 99(6): 1869-1876. https://doi.org/10.1016/j.biortech.2007.03.037
  4. Duff, S. and W. Murray. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology 55(1): 1-33. https://doi.org/10.1016/0960-8524(95)00122-0
  5. Galbe, M. and G. Zacchi. 2002. A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology 59(6): 618-628. https://doi.org/10.1007/s00253-002-1058-9
  6. Jacobsen, S. E. and C. E. Wyman. 2002. Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Industrial & Engineering Chemistry Research 41(6): 1454-1461. https://doi.org/10.1021/ie001025+
  7. Jeffries, T., I. Grigoriev, J. Grimwood, J. Laplaza, A. Aerts, A. Salamov, J. Schmutz, E. Lindquist, P. Dehal, and H. Shapiro. 2007. Genome sequence of the lignocellulose-bioconverting and xylosefermenting yeast Pichia stipitis. Nature Biotechnology 25(3): 319-326. https://doi.org/10.1038/nbt1290
  8. Jorgensen, H., J. Kristensen, and C. Felby. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining 1(2): 119-134. https://doi.org/10.1002/bbb.4
  9. Kenealy, W., E. Horn, and C. Houtman. 2007. Vapor-phase diethyl oxalate pretreatment of wood chips: Part 1. Energy savings and improved pulps. Holzforschung 61(3): 223-229.
  10. Kim, H., J. Lee, T. Jeffries, and I. Choi. 2010. Response surface optimization of oxalic acid pretreatment of yellow poplar (Liriodendron tulipifera) for production of glucose and xylose monosaccarides. Bioresource Technology (online published).
  11. Lee, J., R. Rodrigues, and T. Jeffries. 2009. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresource Technology 100(24): 6,307-6,311. https://doi.org/10.1016/j.biortech.2009.06.088
  12. Lee, J., R. Rodrigues, H. Kim, I. Choi, and T. Jeffries. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101(12): 4,379-4,385. https://doi.org/10.1016/j.biortech.2009.12.112
  13. Meyer-Pinson, V., K. Ruel, F. Gaudard, G. Valtat, M. Petit-Conil, and B. Kurek. 2004. Oxalic acid: a microbial metabolite of interest for the pulping industry. Comptes Rendus Biologies 327(9-10): 917-925. https://doi.org/10.1016/j.crvi.2004.07.007
  14. Mittal, A., S. Chatterjee, G. Scott, and T. Amidon. 2009. Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: Reaction kinetics and mass transfer. Chemical Engineering Science 64(13): 3031-3041. https://doi.org/10.1016/j.ces.2009.03.011
  15. Navarro, A. 1994. Effects of furfural on ethanol fermentation bySaccharomyces cerevisiae: Mathematical models. Current Microbiology 29(2): 87-90. https://doi.org/10.1007/BF01575753
  16. Nguyen, Q., M. Tucker, F. Keller, and F. Eddy. 2000. Two-stage dilute-acid pretreatment of softwoods. Applied Biochemistry and Biote- chnology 84(1): 561-576. https://doi.org/10.1385/ABAB:84-86:1-9:561
  17. Nichols, N., L. Sharma, R. Mowery, C. Chambliss, G. Van Walsum, B. Dien, and L. Iten. 2008. Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme and Microbial Technology 42(7): 624-630. https://doi.org/10.1016/j.enzmictec.2008.02.008
  18. Olofsson, K., A. Rudolf, and G. Liden. 2008. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. Journal of Biotechnology 134(1-2): 112-120. https://doi.org/10.1016/j.jbiotec.2008.01.004
  19. Ozcan, S., P. Kotter, and M. Ciciary. 1991. Xylanhydrolysing enzymes of the yeast Pichia stipitis. Applied Microbiology and Biotechnology 36(2): 190-195. https://doi.org/10.1007/BF00164418
  20. Perez, J., I. Ballesteros, M. Ballesteros, F. Saez, M. Negro, and P. Manzanares. 2008. Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87(17-18): 3640-3647. https://doi.org/10.1016/j.fuel.2008.06.009
  21. Qureshi, N. and T. Ezeji. 2008. Butanol, 'a superior biofuel' production from agricultural residues (renewable biomass): recent progress in technology. Biofuels, Bioproducts and Biorefining 2(4): 319-330. https://doi.org/10.1002/bbb.85
  22. Roberto, I., S. Mussatto, and R. Rodrigues. 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products 17(3): 171-176. https://doi.org/10.1016/S0926-6690(02)00095-X
  23. Selig, M., S. Viamajala, S. Decker, M. Tucker, M. Himmel, and T. Vinzant. 2007. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnology Progress 23(6): 1333-1339. https://doi.org/10.1021/bp0702018
  24. Shimada, M., M. Ma, Y. Akamatsu, and T. Hattori. 1994. A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiology Reviews 13(2): 285-295. https://doi.org/10.1111/j.1574-6976.1994.tb00049.x
  25. Swaney, R., M. Akhtar, E. Horn, M. Lenz, J. Klungness, and M. Sabourin. 2003 Oxalic acid pretreatment for mechanical pulping greatly improves paper strength while maintaining scattering power and reducing shives and triglycerides. In: Proceedings of the Tappi Fall Technical Confer1ence: Engineering pulping and PCE and I. Tappi Press. Atlanta. GA.
  26. Tucker, M., J. Farmer, F. Keller, D. Schell, and Q. Nguyan. 1998. Comparison of yellow poplar pretreatment between NREL digester and Sunds hydrolyzer. Applied Biochemistry and Biotechnology 70(1): 25-35. https://doi.org/10.1007/BF02920121
  27. Wyman, C., B. Dale, M. Holtzapple, M. Ladisch, Y. Lee, and J. Saddler. 2007. Pretreatment: the key to unlocking low-cost cellulosic ethanol Biofuels. Bioproducts and Biorefining 2(1): 26-40.

Cited by

  1. Recovery of Catalyst Used in Oxalic Acid Pretreatment of Empty Fruit Bunch (EFB) and Bioethanol Production vol.41, pp.6, 2013, https://doi.org/10.5658/WOOD.2013.41.6.507
  2. Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by Detoxification of Hydrolysate and Semi-SSF vol.54, pp.4, 2016, https://doi.org/10.9713/kcer.2016.54.4.494
  3. Enhancement of Ethanol Production by The Removal of Fermentation Inhibitors, and Effect of Lignin-derived Inhibitors on Fermentation vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.389
  4. Investigation of Furfural Yields of Liquid Hydrolyzate during Dilute Acid Pretreatment Process on Quercus Mongolica using Response Surface Methodology vol.44, pp.1, 2016, https://doi.org/10.5658/WOOD.2016.44.1.85