DOI QR코드

DOI QR Code

Characterization of Pyrolytic Lignin in Biooil Produced with Yellow Poplar (Liriodendron tulipifera)

백합나무 바이오오일에서 회수한 열분해리그닌(Pyrolytic Lignin)의 화학적 특성

  • Kim, Kwang-Ho (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Moon, Sun-Joo (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Kim, Tai-Seung (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Lee, Soo-Min (Div. Forest Bioenergy, Dept. Forest Resources Utilization) ;
  • Yeo, Hwan-Myeong (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Choi, In-Gyu (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Choi, Joon-Weon (Dept. Forest Sciences, CALS, Seoul National University)
  • 김광호 (서울대학교 농업생명과학대학 산림과학부) ;
  • 문선주 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김태승 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이수민 (국립산림과학원 녹색자원이용부 바이오에너지연구과) ;
  • 여환명 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2010.09.09
  • Accepted : 2010.11.16
  • Published : 2011.01.25

Abstract

Pyrolytic lignin was obtained from biooil produced with yellow poplar wood. Fast pyrolysis was performed under various temperature ranges and residence times using fluidized bed type reactor. Several analytical methods were adopted to characterize the structure of pyrolytic lignin as well as the effect of pyrolysis temperature and residence time on the modification of the lignin. The yield of pyrolytic lignin increased as increasing pyrolysis temperature and decreasing residence time of pyrolysis products. The molecular weight of pyrolytic lignin determined by gel permeation chromatography (GPC) was approximately 1,200 mol/g, which was approximately a tenth of milled wood lignin (MWL) purified from the same woody biomass. Based on analytical data, demethoxylation and side chain cleavage reaction were dominantly occurred during fast pyrolysis.

열분해 온도와 체류시간을 달리하며 급속 열분해 공정을 통해 얻어진 백합나무 바이오오일로부터 분말 형태의 열분해리그닌(pyrolytic lignin)을 회수하였다. 바이오오일을 구성하고 있는 열분해리그닌의 특성을 이해하고 급속 열분해 실험 조건 - 반응 온도, 체류시간 - 이 열분해 과정에서 리그닌에 미치는 영향을 살펴보기 위해 수율을 비롯한 다양한 화학적, 구조적 분석을 수행하였다. 열분해 온도가 증가하고, 체류시간이 줄어들수록 바이오오일로부터 회수되는 열분해리그닌의 수율은 증가하였다. 열분해리그닌의 분자량은 백합나무 MWL (milled wood lignin)에 비해 1/10 수준인 약 1,200 mol/g로 측정되었다. 열분해리그닌 내 포함된 작용기 함량과 $^{13}C$ NMR 분석을 통해 바이오매스가 열분해되는 동안 탈메톡실화 반응과 리그닌의 propane side chain 분해반응이 우세하게 일어난다는 사실을 확인하였다.

Keywords

References

  1. Amidon, T. E., C. D. Wood, A. M. Shupe, Y. Wang, M. Graves, and S. J. Liu. 2008. Biorefinery: Conversion of woody biomass to chemicals, energy and materials. Journal of Biobased Materials and Bioenergy 2: 100-120. https://doi.org/10.1166/jbmb.2008.302
  2. Sochacki, S. J., R. J. Harper, and K. R. J. Smettem. 2007. Estimation of woody biomass production from a short-rotation bio-energy system in semi-arid Australia. Biomass & Bioenergy 31: 608-616. https://doi.org/10.1016/j.biombioe.2007.06.020
  3. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  4. Bridgwater, A. V., D. Meier, and D. Radlein. 1999. An overview of fast pyrolysis of biomass. Organic Geochemistry 30: 1479-1493. https://doi.org/10.1016/S0146-6380(99)00120-5
  5. Czernik, S. and A. V. Bridgwater. 2004. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 18: 590-598. https://doi.org/10.1021/ef034067u
  6. Scott, D. S., P. Majerski, J. Piskorz, and D. Radlein. 1999. A second look at fast pyrolysis of biomassthe RTI process. Journal of Analytical and Applied Pyrolysis 51: 23-37. https://doi.org/10.1016/S0165-2370(99)00006-6
  7. Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20: 848-889. https://doi.org/10.1021/ef0502397
  8. Oasmaa, A., D. C. Elliott, and S. Muller. 2009. Quality Control in Fast Pyrolysis Bio-Oil Production and Use. Environmental Progress & Sustainable Energy 28: 404-409. https://doi.org/10.1002/ep.10382
  9. Bridgwater, A. V. and G. V. C. Peacocke. 2000. Fast pyrolysis processes for biomass. Renewable & Sustainable Energy Reviews 4: 1-73. https://doi.org/10.1016/S1364-0321(99)00007-6
  10. Scholze, B. and D. Meier. 2001. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. Journal of Analytical and Applied Pyrolysis 60: 41-54. https://doi.org/10.1016/S0165-2370(00)00110-8
  11. Baker, S. M. 1996. Rapid methoxyl analysis of lig nins using gas chromatography. Holzforschung 50: 573-574.
  12. Lu, F. C. and J. Ralph. 1997. Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: Protocol for analysis of DFRC monomers. Journal of Agricultural and Food Chemistry 45: 2590-2592. https://doi.org/10.1021/jf970258h
  13. Piskorz, J., D. S. Radlein, D. S. Scott, and S. Czernik. 1989. Pretreatment of Wood and Cellulose for Production of Sugars by Fast Pyrolysis. Journal of Analytical and Applied Pyrolysis 16: 127-142. https://doi.org/10.1016/0165-2370(89)85012-0
  14. Liu, Q., S. R. Wang, Y. Zheng, Z. Y. Luo, and K. F. Cen. 2008. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis 82: 170-177. https://doi.org/10.1016/j.jaap.2008.03.007
  15. Kim, K. H., I. Y. Eom, S. M. Lee, H. M. Yeo, I. G. Choi, and J. W. Choi. 2010. Investigation of physicochemical properties of biooils produced with yellow poplar wood (Liriodendron tulipifera) at diverse temperatures and residence times, Journal of Analytical and Applied Pyrolysis (submitted).
  16. Scholze, B., C. Hanser, and D. Meier. 2001. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part II. GPC, carbonyl goups, and C-13-NMR. Journal of Analytical and Applied Pyrolysis 58: 387-400.