Effects of Coupling Agents and Clay on the Physical Properties of Wood Flour/Polyethylene Composites

커플링제 및 점토가 목분/폴리에틸렌 복합체의 물성에 미치는 영향

  • Park, Byung-Sub (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Dae-Su (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2010.08.24
  • Accepted : 2010.10.30
  • Published : 2011.03.25

Abstract

Wood plastic composites (WPCs) are attracting a lot of interest recently. In this study, wood flour/polyethylene (PE) composites panels comprised of a coupling agent and nanoclay were prepared by melt-blending followed by compression molding. Five maleic anhydride grafted polyethylene (MAPE) coupling agents were tested, and the best choice and its optimum content were determined. The mechanical properties of the WPCs were measured by UTM, and the thermal properties were measured by TGA, DMA, DSC, and TMA. Adding just a small amount (1 phr) of organoclay made the tensile and flexural strength and the crystallinity of the WPC somewhat increase and the storage modulus and dimensional stability of the WPC largely increase. SEM images showed that the coupling agent drastically improved wood flour/PE interfacial bonding. Selecting the best coupling agent optimized content and adding a small amount of organoclay resulted in a high performance wood flour/PE composite.

최근 목분/플라스틱 복합체(WPC)가 많은 관심을 끌고 있다. 본 연구에서는 커플링제 및 나노점토가 함유된 목분/폴리에틸렌(PE) 복합체 패널을 용융혼합 후 압축 성형하여 제조하였다. 5 종의 말레산무수물 그래프트 폴리에틸렌(MAPE) 커플링제에 대해 시험하여 가장 우수한 커플링제 및 힘량을 결정하였다. WPC의 기계적 특성은 UTM으로, 열적 특성은 TGA, DMA, DSC, TMA로 측정하였다. 유기점토를 소량(1 phr) 만 첨가하여도 WPC의 인장강도 및 굴곡강도 결정화도가 증가하는 경향을 보였으며 저장탄성률과 치수안정성은 크게 증가하였다. SEM으로 분석한 결과 커플링제에 의한 목분/PE 계면결합력 향상 효과가 매우 큼을 알 수 있었다. 최적의 커플링제를 선정하여 힘량을 최적화하고 소량의 유기점토를 첨가함으로써 우수한 성능의 목분/PE 복합체를 제조할 수 있었다.

Keywords

References

  1. B. A. Kamal, P. Shusheng, and M. P. Staiger, Compos. Part B. Eng., 39, 807 (2008). https://doi.org/10.1016/j.compositesb.2007.10.005
  2. K. Oksman and C. Clemons, J. Appl. Polym. Sci., 67, 1503 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980228)67:9<1503::AID-APP1>3.0.CO;2-H
  3. A. K. Bledzki, S. Reihmane, and J. Gassan, Polym. Plast. Technol. Eng., 37, 451 (1998). https://doi.org/10.1080/03602559808001373
  4. M. M. Stain, B. V. Kokta, and C. Imbert, Polym. Plast. Technol. Eng., 33, 89 (1994). https://doi.org/10.1080/03602559408010733
  5. J. M. Felix and P. J. Gatenholm, J. Appl. Polym. Sci., 50, 699 (1993). https://doi.org/10.1002/app.1993.070500416
  6. D. Maldas and B. V. Kokta, Composite Interfaces, 1, 87 (1993). https://doi.org/10.1163/156855493X00338
  7. R. Gauthier, C. Joly, A. Coupas, H. Gauthier, and M. Escoubes, Polym. Composite, 19, 287 (1998). https://doi.org/10.1002/pc.10102
  8. L. john Z, Q. Wu, and L. L. Negulescu, J. Appl. Polym. Sci., 96, 93 (2005). https://doi.org/10.1002/app.21410
  9. J. U. Park, J. L. Kim, D. H. Kim, K. H. Ahn, and S. J. Lee, Macromol. Res., 14, 318 (2006). https://doi.org/10.1007/BF03219088
  10. G. Malucelli, S. Ronchetti, and N. Lak, J. Eur. Polym., 43, 328 (2007). https://doi.org/10.1016/j.eurpolymj.2006.11.024
  11. F. Omar and M. Laurent, Compos. Sci. Technol., 68, 2073 (2008). https://doi.org/10.1016/j.compscitech.2008.03.004
  12. S. Zhang and A. R. Horrocks, Prog. Polym. Sci., 28, 1517 (2003). https://doi.org/10.1016/j.progpolymsci.2003.09.001
  13. S. Bourbigot, J. W. Gilman, and C. A. Wilkie, Polym. Degrad. Stabil., 84, 483 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.01.006
  14. F. Gong, M. Feng, C. Zhao, S. Zang, and M. Yang, Polym. Degrad. Stabil., 84, 289 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.11.003
  15. H. Qin, Q. Su, S. Zhang, B. Zhao, and M. Yang, Polym., 44, 7533 (2003). https://doi.org/10.1016/j.polymer.2003.09.014
  16. G. Marosi, A. Márton, A. Szép, I. Csontos, S. Keszei, and E. Zimonyi, Polym. Degrad. Stabil., 82, 379 (2003). https://doi.org/10.1016/S0141-3910(03)00223-4
  17. G. Beyer, Plastics, Additives and Compounding, 10, 22 (2002).
  18. M. Ahmed, Textile Science and Technology, Amsterdam, Elsevier, p.10 (1982).
  19. H. G. Jeon, H. T. Jung, S. D. Lee, and S. Hudson, Polym. Bull., 41, 107 (1998). https://doi.org/10.1007/s002890050339
  20. E. Manias, A. Touny, L. Wu, B. Lu, K. Strawhecker, J. W. Gilman, and T. C. Chung, Polym. Mater. Sci. Eng., 82, 282 (2000).
  21. L. Minkova, Y. Peneva, E. Tashev, S. Filippi, M. Pracella, and P. Magagnini, Polym. Test., 28, 528 (2009). https://doi.org/10.1016/j.polymertesting.2009.04.001
  22. H. S. Kim, B. H. Lee, S. W. Choi, S. Kim, and H. J. Kim, Compos. Pt. A-Appl. Sci. Manuf., 38, 1473 (2007). https://doi.org/10.1016/j.compositesa.2007.01.004
  23. A. K. Bledzki, O. Farnk, and M. Huque, Polym. Plast. Technol. Eng., 41, 435 (2002). https://doi.org/10.1081/PPT-120004361
  24. T. Q. Li and R. K. Y. Li, Polym. Plast. Technol. Eng., 40, 1 (2001). https://doi.org/10.1081/PPT-100000116
  25. Y. Q. Zhang, J. H. Lee, J. M. Rhee, and K. Y. Rhee, Compos. Sci. Technol., 64, 1383 (2004). https://doi.org/10.1016/j.compscitech.2003.10.014
  26. J. H. Lee, D. S. Jung, C. E. Hong, K. Y. Rhee, and S. G. Adavin, Compos. Sci. Technol., 65, 1996 (2005). https://doi.org/10.1016/j.compscitech.2005.03.015