DOI QR코드

DOI QR Code

Production of Gemcitabine-Loaded Poly (L-lactic acid) Microparticles Using Supercritical Carbon Dioxide: Effect of Process Parameters

초임계 이산화탄소를 이용한 Gemcitabine 함유 PLLA 미립자 제조: 공정 변수의 영향

  • Joo, Hyun-Jae (Department of Chemical Engineering, The University of Suwon) ;
  • Jung, In-Il (Department of Chemical Engineering, The University of Suwon) ;
  • Lim, Gio-Bin (Department of Chemical Engineering, The University of Suwon) ;
  • Ryu, Jong-Hoon (Department of Chemical Engineering, The University of Suwon)
  • Received : 2011.01.31
  • Accepted : 2011.02.21
  • Published : 2011.02.28

Abstract

In this study, poly (L-lactic acid) (PLLA) microparticles containing gemcitabine hydrochloride were prepared by a supercritical fluid process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide as antisolvent. The influence of process parameters such as temperature, pressure, $CO_2$ and solution flow rate, solution concentration, and feed ratio of drug to polymer on the morphology and characteristics of the microparticles was studied in detail. The gemcitabine-loaded microparticles exhibited a spherical shape with a smooth surface. The entrapment efficiency of gemcitabine increased with increasing temperature, solution concentration and $CO_2$ flow rate and with decreasing drug/polymer feed ratio. The maximum drug loading obtained from the ASES process was found to be about 11%. The ASES-processed PLLA microparticles containing gemcitabine showed a relatively high initial burst due to the presence of surface pores on the microparticles and the poor affinity between drug and polymer.

Keywords

References

  1. Feng, S. S. and S. Chien (2003) Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 58: 4087-4114. https://doi.org/10.1016/S0009-2509(03)00234-3
  2. Park, J. H., M. Ye, and K. Park (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10: 146-161. https://doi.org/10.3390/10010146
  3. Langer, R. (2006) Biomaterials for drug delivery and tissue engineering. MRS Bull. 31: 477-485. https://doi.org/10.1557/mrs2006.122
  4. Jain, R. A. (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 21: 2475-2490. https://doi.org/10.1016/S0142-9612(00)00115-0
  5. Ghaderi, R. (2000) A supercritical fluids extraction process for the production of drug loaded biodegradable microparticles. Ph. D. Dissertation, Uppsala University, Uppsala, Sweden.
  6. Li, M., O. Rouaud, and D. Poncelet (2008) Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int. J. Pharm. 363: 26-39. https://doi.org/10.1016/j.ijpharm.2008.07.018
  7. Kompella, U. B. and K. Koushik (2001) Preparation of drug delivery systems using supercritical fluid technology. Crit. Rev. Ther. Drug Carr. Syst. 18: 173-199.
  8. Yeo, S. D. and E. Kiran (2005) Formation of polymer particles with supercritical fluids: A review. J. Supercrit. Fluids 34: 287-308. https://doi.org/10.1016/j.supflu.2004.10.006
  9. Bahrami, M. and S. Ranjbarian (2007) Production of micro-and nano-composite particles by supercritical carbon dioxide. J. Supercrit. Fluids 40: 263-283. https://doi.org/10.1016/j.supflu.2006.05.006
  10. Martin, A. and M. J. Cocero (2008) Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv. Drug Del. Rev. 60: 339-350. https://doi.org/10.1016/j.addr.2007.06.019
  11. Mangeold, C. (2001) Chemotherapy for advanced non-small cell lung cancer. Semin. Oncol. 28: 1-6. https://doi.org/10.1053/sonc.2001.19718
  12. Locher, C., E. Fabre-Guillevin, F. Brunetti, J. Auroux, J. Charles Delchier, P. Piedbois, and L. Zelek (2008) Fixed-dose rate gemcitabine in elderly patients with advanced pancreatic cancer: An observational study. Crit. Rev. Oncol. Hematol. 68: 178-182. https://doi.org/10.1016/j.critrevonc.2008.06.010
  13. Fruscella, E., D. Gallo, G. Ferrandina, G. D'Agostino, and G. Scambia (2003) Gemcitabine: current role and future options in the treatment of ovarian cancer. Crit. Rev. Oncol. Hematol. 48: 81-88. https://doi.org/10.1016/S1040-8428(03)00119-7
  14. Wirk, B. and E. Perez (2006) Role of gemcitabine in breast cancer management: An update. Semin. Oncol. 33: 6-14.
  15. Maase, H. V. D. (2001) Gemcitabine in advanced bladder cancer. Semin. Oncol. 28: 11-14. https://doi.org/10.1053/sonc.2001.24369
  16. Umanzor, J., M. Aguiluz, C. Pineda, S. Andrade, M. Erazo, C. Flores, and S. Santillana (2006) Concurrent cisplatin/gemcitabine chemotherapy along with radiotherapy in locally advanced cervical carcinoma: A phase II trial. Gynecol. Oncol. 100: 70-75. https://doi.org/10.1016/j.ygyno.2005.07.132
  17. Chen, A.-Z., X.-M. Pu, Y.-Q. Kang, L. Liao, Y.-D. Yao, and G.-F. Yin (2007) Study of poly (L-lacide) microparticles based on supercritical $CO_2$. J. Mater. Sci. Mater. Med. 18: 2339-2345. https://doi.org/10.1007/s10856-007-3173-8
  18. J. Jung and M. Perrut (2001) Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluids 20: 179-219. https://doi.org/10.1016/S0896-8446(01)00064-X
  19. J. H. kim, S. Y. Lee, B. Y. Kim, J. H. Ryu, and G. B. Lim (2003) Preparation of L-PLA microparticles using pure and cosolvent-modified supercritical carbon dioxide. Korean J. Biotechnol. Bioeng. 18: 385-392.
  20. Tu, L. S., F. Dehghani, and N. R. Foster (2002) Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent. Powder Technol. 126: 134-149. https://doi.org/10.1016/S0032-5910(02)00045-1
  21. Kim, M. Y., Y. W. Lee, H. S. Byun, and J. S. Lim (2006) Recrystallization of poly (L-lactic acid) into submicrometer particles in supercritical carbon dioxide. Ind. Eng. Chem. Res. 45: 3388-3392. https://doi.org/10.1021/ie050711b
  22. Song, K. H., C.-H. Lee, J. S. Lim, and Y.-W. Lee (2002) Preparation of L-PLA submicron particles by a continuous supercritical antisolvent precipitation process. Korean J. Chem. Eng. 19: 139-145. https://doi.org/10.1007/BF02706887
  23. Reverchon, E., G. Della Porta, and M. G. Falivene (2000) Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. J. Supercrit. Fluids 17: 239-248. https://doi.org/10.1016/S0896-8446(00)00045-0
  24. Taki, S., E. Badens, and G. Charbit (2001), Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer. J. Supercrit. Fluids 21: 61-70. https://doi.org/10.1016/S0896-8446(01)00076-6
  25. Ritger, P. L. and N. A. Peppas (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Contro. Rel. 5: 37-42. https://doi.org/10.1016/0168-3659(87)90035-6
  26. Kim, C.-J. (1999) Release kinetics of coated, donut-shaped tablets for water soluble drugs. Eur. J. Pharm. Sci. 7: 237-242. https://doi.org/10.1016/S0928-0987(98)00029-3

Cited by

  1. Preparation of Gemcitabine-Loaded PLLA/Gemcitabine-PLLA Microparticles Using Supercritical Fluid and Their Release Characteristics vol.29, pp.6, 2014, https://doi.org/10.7841/ksbbj.2014.29.6.405
  2. Preparation of Zein Microparticles Using Supercritical Carbon Dioxide vol.27, pp.4, 2012, https://doi.org/10.7841/ksbbj.2012.27.4.237