DOI QR코드

DOI QR Code

Throughput Analysis of the IEEE 802.11g DCF with ERP-OFDM Parameters

IEEE 802.11g ERP-OFDM 파라미터 기준 DCF 처리율 분석

  • 강구홍 (서원대학교 정보통신공학과)
  • Received : 2011.03.12
  • Accepted : 2011.05.25
  • Published : 2011.06.30

Abstract

A lot of works on the throughput analysis of the IEEE 802.11 DCF have been studied since last few years. However, we should predict the throughput of the IEEE 802.11g that we mostly use today because the existing numerical results do not consider exactly the IEEE 802.11g with the physical layer ERP-OFDM parameters. In particular, we might have different results in the working WLAN s compared with the simple predictions of the throughput using the previous results. In this paper, we directly monitor the ERP-OFDM physical layer parameters on the operating WLANs, and then analyze the saturated DCF throughput with the well-known analytic model. Moreover, we measure the bandwidth utilization on the real WLANs working with FTP services, and then compare them with the analytic results. According to the experiment results, we confirm the usefulness of the analytic models which assume the saturated traffic sources.

지난 수년간 IEEE 802.11 DCF 처리율 분석에 대한 연구가 진행되어 왔다. 그러나 이들 연구 결과들은 IEEE 802.11g 물리계층 ERP-OFDM 파라미터를 정확히 반영하고 있지 않아 오늘날 대부분이 사용하고 있는 무선랜 802.11g의 처리율 분석을 기존 결과를 이용해 예측할 수밖에 없다. 특히, 이러한 단순 예측은 실제 운영 중인 무선랜 환경에서는 다른 결과를 가져올 수도 있다. 따라서 본 논문에서는 운영 중인 무선랜 환경에서 IEEE 802.11g ERP-OFDM 물리계층 파라미터를 직접 측정하고 이를 기준으로 포화상태 트래픽 조건하에서 802.11 DCF 처리율을 분석하였다 또한 FTP 서비스를 이용한 실제 트래픽을 발생시켜 운영 중인 무선랜에서 측정한 DCF 처리율과 이들 분석적 모델 분석결과와의 차이를 확인함으로써 포화상태를 가정한 DCF 처리율 분석 모텔의 적용 가능성을 확인하였다.

Keywords

References

  1. T. Paul and T. Ogunfunmi, "Wireless LAN Comes of Age: Understanding the IEEE 802.11n Amendment," IEEE Circuits and System Magazine, pp.28-54, 2008
  2. 802.11g working group, "Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Further higher data rate extension in the 2.4 ghz band," 2003, IEEE Standard.
  3. IEEE 802.11 part II: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, Aug. 1999.
  4. D. Vassis, G. Kormentzas, A. Rouskas, and I. Maglogiannis, "The IEEE 802.11g Standard for High Data Rate WLANs," IEEE Network Magzine, pp.21-26, May/June 2005.
  5. 권수근, 정연준, 오연주, 백의현, 박광로 "WLAN기반 네트워크에서 실시간서비스 지원을위한 핸드오프 방식", 한국산업정보학회논문지, Vol. 11, No. 3, pp. 1-9, 2006.
  6. G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed Coordination Function," IEEE Journal on Selected Areas in Communications, Vol.18, pp.535-547, Mar. 2000. https://doi.org/10.1109/49.840210
  7. Z. Tang, Z. Yang, J. He, and Y. Liu, "Impact of Bit Errors on the Performance of DCF for Wireless LAN," In Proc. of Communications, Circuits and System, pp.529-533, 2002.
  8. E. Lopez-Aguilera, J. Casademont, and J. Cotrina, "IEEE 802.11g Performance in Presence of Beacon Control Frames," In Proc. of PIMRC 2004, pp.318-322, 2004 .
  9. J. Choi, J. Na, K. Park, and C. Kim, "Adaptive Optimization of Rate Adaptation Algorithms in Multi-Rate WLANs," In Proc. IEEE ICNP'07, 2007, pp.144-153.
  10. A. Akella, G. Judd, S. Seshan, and P. Steenkiste, "Self-management in chaotic wireless deployments," In Proc. of Mobile Computing and Networking, Aug. 2005.
  11. T. Wang and H.H. Refai, "Empirical Network Performance Analysis on IEEE 802.11g with Different Protocols and Signal to Noise Ratio Values," In Proc. of Wireless and Optical Communications Networks, 2005, pp.29-33.
  12. D. Malone, K. Duffy, and D.Leith, "Modeling the 802.11 Distributed Coordination Function in Non-saturated Heterogeneous Conditions," IEEE/ACM Trans. on Networking, Vol. 15, No. 1, pp.159-173, Feb. 2007. https://doi.org/10.1109/TNET.2006.890136

Cited by

  1. A spectral efficient transmission method for ofdm-based power line communications vol.19, pp.4, 2014, https://doi.org/10.9723/jksiis.2014.19.4.025