Effects of Sedimentation on Benthic Macroinvertebrate Communities at Upper Song Stream Basin

고랭지 농업으로 인한 토사가 송천 상류역에 서식하는 저서성 대형무척추동물 군집에 미치는 영향

  • Han, Seung-Chul (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Jun, Yung-Chul (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Hwang, In-Chul (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Won, Doo-Hee (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.)
  • 한승철 ((주)생태조사단 부설 두희생태연구소) ;
  • 전영철 ((주)생태조사단 부설 두희생태연구소) ;
  • 황인철 ((주)생태조사단 부설 두희생태연구소) ;
  • 원두희 ((주)생태조사단 부설 두희생태연구소)
  • Received : 2011.08.17
  • Accepted : 2011.11.17
  • Published : 2011.11.30

Abstract

This study was conducted to examine the effects of sedimentation caused by highland agriculture on benthic macroinvertbrate assemblages in upper Song Stream from 2006 to 2009. The mean concentrations of water quality parameters (pH, DO, EC, TDS, TN, and TP) were gradually increasing toward downstream but ORP was decreased. Furthermore, biological habitats at lower reaches were more homogeneous and unstable due to sand deposition than those at upper sites. A total 106 species of benthic macroinvertbrates in 47 families, 11 orders, 6 classes, and 5 phyla were identified during whole field surveys. Song Stream showed great declines of overall biological attributes along its longitudinal gradients, particularly in taxa richness and abundance. Of all functional groups scrapers and clingers were most affected against the degradation of habitat quality, whereas collector-gatherers and burrowers showed the opposite case. It was found that such results had close correlations with water quality parameters and substrate composition which played an important role in structuring macroinvertebrate communities. In conclusion, this study represents that disturbance caused by highland agricultural activities had negative effects on benthic macroinvertebrate communities by leading to sand deposition at adjacent stream ecosystems.

본 연구는 송천 상류지역의 고랭지 농업으로 인한 토사유입이 저서성 대형무척추동물에 미치는 영향을 알아보기 위하여 2006년부터 2009년에 걸쳐 실시되었다. 조사결과, pH, DO, EC, TDS, TN, TP는 하류로 갈수록 증가하는 경향을 보였으며, ORP는 감소하는 것으로 확인되었다. 특히 SS와 TP는 농경지 구간인 St. 2~St. 4에서 급격한 증가를 보였으며, 파종과 수확시기에 변화가 컸다. 저서성 대형무척추동물의 구성은 총 5문 6강 11목 47과 106종이 출현하였으며, 이중 EPT 분류군이 전체의 구성종의 69.8%, 개체밀도의 66.5%를 차지하였다. 우점도지수는 하류로 갈수록 증가하였으며, 다양도지수는 이에 반비례하였으며, 각 지점들은 유의한 수준에서 차이를 나타냈다. 섭식기능군은 주워먹는무리가 전 지점에서 우세하였으며, 하류로 갈수록 전 섭식기능군에서 종수가 감소하는 것으로 나타났으나, 주워먹는무리는 상대적으로 증가하는 것으로 확인되었다. 생활형은 하류로 갈수록 붙는무리와 기어다니는무리의 종수 및 밀도가 감소하였으며, 굴파는무리의 밀도는 증가하였다. 환경요인과의 상관분석 결과, 저서성 대형무척추동물은 수질 및 하상구성에 대하여 민감하게 반응하는 것으로 확인되었다. 결과적으로 고랭지 농업에 의하여 야기된 토사의 퇴적은 미소서식환경을 변화시키거나 서식처의 질을 열악하게 함으로써 저서성 대형무척추동물 군집에 영향을 미친다고 판단된다.

Keywords

References

  1. 고령지농업연구소. 2005. 고랭지 경사지 토양의 농약오염 특성 및 농약투입저감방안 3차년도 완결보고서. 농촌진흥청.
  2. 김범철, 허우명, 황길순. 1995. 도암호의 부영양화 실태. 한국육수학회지. 28:223-240.
  3. 낙동강수계관리위원회. 2004. 임하호의 탁수가 수서생태계에 미치는 영향.
  4. 박철수, 정영상, 주진호, 양재의. 2004. 강원도 고랭지의 석비레 성토지 토양 특성. 한국토양비료학회지. 37:66-73.
  5. 배연재, 박선영, 황정미. 1998. 깜장하루살이 (하루살이목: 꼬마하루살이과) 유충의 기재 및 한국산 꼬마하루살이과 유충의 검색표. 한국육수학회지. 31:282-286.
  6. 신영규. 2004. 대관령 지역의 산림 소유역과 농경지 소유역의 수질 비교. 대한지리학회지. 39:544-561.
  7. 원두희, 권순직, 전영철. 2005. 한국의 수서곤충. 생태조사단.
  8. 원두희, 이종은, 공동수. 2007. 탁수가 저서성 대형무척추동물 군집에 미치는 영향. 자연보존. 139:16-29.
  9. 윤일병. 1988. 한국동식물도감. 제30권. 동물편 (수서곤충류). 문교부.
  10. 윤일병. 1995. 수서곤충검색도설. 정행사. 서울.
  11. 이상하, 최재석, 이광열, 장영수, 임인수, 허우명, 김재구, 김범철. 2006. 도암호의 수질과 어류군집 특성 연구. 한국육수학회지. 39:167-177.
  12. 정성민, 장창원, 김재구, 김범철. 2009. 한강상류 고령지 농업지역에서의 강우시 비점오염 유출 특성. 수질보전 한국물환경학회지. 25:101-111.
  13. 주진호, 박철수, 정영상, 양재의, 최중대, 이원정, 김성일. 2004. 산지 농경지에 투입되는 모재성토의 특성. 한국토양비료학회지. 37:245-250.
  14. 한강수계관리위원회. 2008. 한강수계 탁수저감대책 마련을 위한 연구.
  15. 한국곤충학회. 1994. 한국곤충명집. 한국곤충학회 건국대 출판부.
  16. 한국동물분류학회. 1997. 한국동물명집 아카데미서적.
  17. 허성구, 김재영, 유동선, 김기성, 안재훈, 윤정숙, 임경재. 2007. 객토 농경지의 토양특성을 고려한 도암댐 유역에서의 수물 및 유사 거동모의. 한국농경학회지. 49:49-60.
  18. 허인량, 박상균, 최규열, 정의호. 1995. 송천상류수계의 수질 및 오염부하량 분포에 관한 연구. 한국수질보전학회지. 11:175-181.
  19. 허인량, 신용건, 이건호, 최지용, 김영진, 정의호, 정명선. 2001. 송천유역의 수질환경특성 및 효율적 유역관리. 한국환경위생학회지. 27:51-59.
  20. 황정훈. 2006. 한국산 날도래목의 분류학적 연구. 고려대학교 박사학위 논문.
  21. Allan DJ. 1995. Stream Ecology; Structure and Function of Running Water. Champman & Hall, London.
  22. APHA. 2001. Standard methods for the examination of water and wastewater, American Public Health Association, 21st edn, APH-AWW-WEF, Washington, DC, USA.
  23. Charles FR, KE Dosiy and LD Zweig. 2005. Stream invertebrate community functional responses to deposited sediment. Aquatic Science 67:395-402.
  24. Chutter FM. 1969. The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologia 34:57-76. https://doi.org/10.1007/BF00040323
  25. Collier KJ, JC Rutherford, JM Quinn and RJ Davies-Colley. 2001. Forecasting rehabilitation outcomes for degraded New Zealand pastoral streams. Water Science and Technology 43:175-184.
  26. Culp JM, SJ Walde and RW Davies. 1983. Relative importance of substrate particle size and detritus to stream bentic macroinvertebrate microdistribution. Canadian Journal of Fisheries and Aquatic Sciences 40:1568-1874. https://doi.org/10.1139/f83-181
  27. Cummins KW. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. American Midland Naturalist 67:477-504. https://doi.org/10.2307/2422722
  28. Cummins KW, MA Wilzbach, DM Gates, JB Perry and WB Taliaferro. 1989. Shredders and riparian Vegetation. Gioscience 39:20-24.
  29. Erman DC and NA Erman. 1984. The response of stream macroinvertebrate to substrate size and hetrogeneity. Hydrobiologya 108:75-82.
  30. Graham AA. 1990. Siltation of stone-surface periphyton in rivers by clay-sized particles from low concentration in suspension. Hydrobiologia 1990:107-116.
  31. Hartman GF and JC Scrivener. 1990. Impact of forestry practices on a coastal stream ecosystem, Carnation Creek. British Columbia. Transactions of the American Fisheries Society 223:1-148.
  32. Kawai T. 1985. An illustrated book of aquatic insects of Japan. Tokai Daigaku Shuppanakai.
  33. Lemly AD. 1982. Modifications of benthic insect communities in polluted streams: Combined effects of sedimentation and nutrient enrichment. Hydrobiologia 87:229-245. https://doi.org/10.1007/BF00007232
  34. McCafferty WP. 1981. Aquatic entomology. Jones and Bartlett, Boston.
  35. McNaughton SJ. 1967. Relationship among functional properties of California Grassland. Nature 216:168-169.
  36. Merritt RW and KW Cummins. 1996. An Introduction to the Aquatic Insects of North America. 3rd edition. Kendall/Hunt Publishing Company.
  37. Minshall GW. 1988. Stream ecosystem theory: A global perspective. Journal of the North American Benthological Society 7:263-288. https://doi.org/10.2307/1467294
  38. Minshall GW. 1984. Aquatic insect-substratum relationships. pp. 358-400. In The Ecology of Aquatic Insects (Resh VH and DM Rosenberg eds.). Praeger, NewYork.
  39. Minshall GW, KW Cummins, RC Petersen, CE Cushing, DA Bruns, JR Sedell and RL Vannote. 1985. Developments in Stream Ecosystem Theory. Canadian Journal of Fisheries and Aquatic Sciences 42:1045-1054. https://doi.org/10.1139/f85-130
  40. Murphy ML, CP Hawkins and NH Anderson. 1982. Effects of canopy modification and accumulated sediment on stream communitys. Transactions of the American Fisheries Society 110:469-478.
  41. Peckarsky BL. 1985. Do predaceous stoneflies and silt affect the structure of stream insect communitis? Canadian Journal of Zoology 63:1519-1530. https://doi.org/10.1139/z85-226
  42. Peckarsky BL, PR Fraissinet, MA Penton and DJ Conklin Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Connell Univ. Press, Ithaca and London.
  43. Pennak RW. 1989. Fresh-water invertebrates of the Unite States. 3rd ed. John Wiley & Sons, Inc.
  44. Rabeni CF and GW Minshall. 1977. Factors afecting the microdistribution of stream benthic insects. Oikos 29:33-43. https://doi.org/10.2307/3543290
  45. Rowe DK, J Smith and I Boothroyd. 2002. Effects of longging with and without riparian strips on fish species abundance, mean size, and the structure of native fish assemblages in Coromandel, New Zealand Streams. New Zealand Journal of Marin and Freshwater Research 36:67-79. https://doi.org/10.1080/00288330.2002.9517071
  46. Shannon CE and W Weaver. 1949. The mathematical theory of communication, University of Illinois Press, Urbana, IL.
  47. Smith DG 2001. Pennak's freshwater invertebrates of the United States - Porifera to Crustacea, John Wiley and Sons, New York.
  48. StatSoft Inc. 2004. STATISTICA (data analysis software system), Version 7, http://www.statsoft.com.
  49. Vannote RL, GW Minshall, KW Cummins, JR Sedell and CE Cushing. 1980. The River continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130-137. https://doi.org/10.1139/f80-017
  50. Wallace JB, SL Eggert, JL Meyer and JR Webster. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 227:102-104.
  51. Ward JV and JA Stanford 1979. Ecological factor Controlling Zoobenthos With Emphasis on Thermal Modification of Regulated Streams. The Ecology of Regulated Stream. Plenum: New York.
  52. Ward JV and JA Stanford. 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27:97-117. https://doi.org/10.1146/annurev.en.27.010182.000525
  53. Waters TF. 1995. Sediment in Streams: Sources, Biological Effects, and Control. American Fisheries Society, Monograph 7, Bethesda, Maryland.
  54. Wiederholm T. 1983. Chironomidae of the Holarctic region Keys and diagnose. Part I - Larvae. Entomologica Scandinavica. Supplement 19.