DOI QR코드

DOI QR Code

Circuit Model Based Analysis of a Wireless Energy Transfer System via Coupled Magnetic Resonances

결합된 자기공명을 통한 무선에너지 전력 전송 시스템의 회로 해석

  • Received : 2010.09.17
  • Accepted : 2010.12.22
  • Published : 2011.04.20

Abstract

A Simple equivalent circuit model is developed for a wireless energy transfer system via coupled magnetic resonances and a practical design method is also provided. Node equations for the resonance system are built with the method, expanding on the equations for a transformer, and the optimum distances of coils in the system are derived analytically for optimum coupling coefficients for high transfer efficiency. In order to calculate the frequency characteristics for a lossy system, the equivalent model is established at an electric design automation tool. The model parameters of the actual system are extracted and the modeling results are compared with measurements. Through the developed model, it is seen that the system can transfer power over a mid-range of a few meters and impedance matching is important to achieve high efficiency. This developed model can be used for a design and prediction on the similar systems such as increasing the number of receiving coils and receiving modules, etc.

자기공명을 이용한 무선 전력 전송 시스템의 등가회로 모델이 제시되었고, 이를 통한 설계기법이 제안되었다. 두개의 코일로 구성된 간단한 트랜스포머의 등가회로를 확장하는 방법으로 본 시스템의 노드 방정식을 세웠고, 이로부터 효율을 높이기 위한 최적의 코일간 거리를 해석하였다. 손실이 있는 경우의 주파수 특성을 계산하기 위해, 상용 설계 시뮬레이터에 등가회로 모델을 심었다. 실제 시스템의 모델 파라미터를 추출하여 시뮬레이션 결과와 측정결과를 비교하였다. 이 해석으로부터, 자기공명 방식의 무선 전력 전송 시스템이 수 미터의 거리까지 높은 효율을 보일 수 있음을 알 수 있었고, 이때 임피던스 정합이 매우 중요하다는 것을 알 수 있었다. 개발된 모델을 통해 공진 코일이 더 많이 있는 경우와 같은, 유사한 시스템의 특성을 예측할 수 있다.

Keywords

References

  1. Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, "Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system", IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1801-1812, 2009, May. https://doi.org/10.1109/TIE.2008.2010110
  2. A. Esser and H. -C. Skudelny, "A new approach to power supplies for robots", IEEE Trans. Industry Appl., Vol. 27, No. 5, pp. 872-875, 1991, Sept. https://doi.org/10.1109/28.90341
  3. J. J. Casanova, Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receiver", IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3060-3068, 2009, August. https://doi.org/10.1109/TIE.2009.2023633
  4. J. Hirai, T.-W. Kim, and A. Kawamura, "Wireless transmission of power and information for cableless linear motor drive", IEEE Trans. Power Electron., Vol. 15, No. 1, 2000, Jan.
  5. J. Sallan, J. L. Villa, A. Llombart, and J. F. Sanz, "Optimal design of ICPT systems applied to electric vehicle battery charge", IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 3060-3068, 2009, June. https://doi.org/10.1109/TIE.2009.2023633
  6. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances", Science, Vol. 317, pp. 83-86, 2007, July. https://doi.org/10.1126/science.1143254
  7. A. Karalis, J. D. Joannopoulos, and M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer", Annal of Physics, Vol. 323, pp. 34-48, 2007.
  8. C. Zhu, K. Liu, C. Yu, R. Ma, and H. Cheng, "Simulation and experimental analysis on wireless energy transfer based on magnetic resonances", Vehicle Power and Propulsion Conference, pp. 1-4, Harbin China, 2008, September 3-5.
  9. W. Fu, B. Zhang, D. Qiu, and W. Wang, "Analysis of transmission mechanism and efficiency of resonance coupling wireless energy transfer system", International Conference Electrical machines and systems, pp. 2163-2168, Wuhan China, 2008, October 17-20.

Cited by

  1. Technological and Theoretical Relationship between Wireless Power Transfer Technologies vol.63, pp.2, 2014, https://doi.org/10.5370/KIEE.2014.63.2.245