DOI QR코드

DOI QR Code

A Study on the Thermal Performance of an Oil Cooler with Dual-cell Model

듀얼셀 모델을 이용한 오일쿨러의 방열성능 연구

  • Park, Sang-Jun (Division of Mechanical and Automotive Engineering, Kongju National University) ;
  • Lee, Young-Lim (Division of Mechanical and Automotive Engineering, Kongju National University)
  • 박상준 (공주대학교 기계자동차공학부) ;
  • 이영림 (공주대학교 기계자동차공학부)
  • Received : 2011.01.17
  • Accepted : 2011.03.10
  • Published : 2011.03.31

Abstract

Heat exchangers have been used for the automotive, HVAC systems, and other various industrial facilities, so the market is very wide. In general, high-efficiency heat exchangers with louver fins are used in the dust-free environment while heat exchangers with wavy fins are used for dusty environment such as construction site, etc. In this study, numerical analysis has been performed for typical heat exchangers, used as oil coolers or fuel coolers, with dual cell model that can handle different grids for the air-side and oil-side of heat exchangers. First wind tunnel tests were conducted to obtain one-dimensional thermal performance data of heat exchangers. Then, heat release rates with varying air flows were numerically predicted using the three-dimensional dual-cell model. The model can greatly enhance the accuracy of thermal design since it includes the effects of nonuniformity of air flows across heat exchangers.

열교환기는 자동차, 공조시스템 및 기타 다양한 산업시설에 이용되고 있어 그 수요가 매우 넓다. 보통 고효율의 루버핀 열교환기는 비오염 환경에 많이 사용되고 파형핀 열교환기는 건설 현장 등 오염이 문제가 되는 곳에 사용된다. 본 논문에서는 공기측과 오일측에 각기 다른 형태의 격자를 사용할 수 있는 듀얼셀 모델을 이용하여 오일쿨러나 연료쿨러에 쓰이는 전형적인 열교환기에 대한 방열 성능을 수치해석하였다. 먼저 풍동 실험을 통한 열교환기 방열성능 실험을 수행하여 1차원 방열성능 데이터를 확보하였다. 다음으로 3차원 수치해석 듀얼셀 열교환기 모델을 이용하여 통과 풍량에 따른 열교환량을 예측하였다. 이러한 모델은 통과 풍속의 불균일도에 따른 열교환량을 예측할 수 있어 방열설계 정확성 향상에 크게 기여할 수 있다.

Keywords

References

  1. W.M. Kays and A. L. London, Compact Heat Exchanger, 3rd Edn, McGraw-Hill, New York, 1964.
  2. A.Achaichia, T. A. Cowell, "Heat Transfer and Pressure Drop Characteristics of Flat Tube and Louvred Plate Fin Surfaces," Experimental Thermal and Fluid Science, Vol.1, pp.147-157, 188 https://doi.org/10.1016/0894-1777(88)90032-5
  3. M. Kajino and M. Hiramatsu, "Research and Development of Automotive Heat Exchangers," Heat Transfer in High Technology and Power Engineering, Hemisphere, pp.402-432, 1987.
  4. W. H. Hucho, "Aerodynamics of Road Vehicles", 4th ed., p.560, Society of Automotive Engineers, Inc., 1998.
  5. B.-S. Park, J.-H Cho and C.-S Han, "Three Dimensional Analysis for the Performance of the Corrugated Louver Fin for a Vehicle Heat Exchanger," Journal of SAREK, Vol.14, No.2, pp.116-126, 2002
  6. M. H. Kim and W. Y. Park, "Air-side Heat Transfer and pressure Drop Characteristics of Louvered Fin Heat Exchangers", KSME International Jounal, pp. 123-128, 1988
  7. H. J Chang, B. H. Kang, S. Kim and B. K. Park, " An Experimental Study on Heat Transfer and Pressure Drop of Air Side in a Plate- Louvered Fin Heat Exchanger", Jornal of Air-Conditioning and Refrigeration Engineering, Vol 14, pp. 485-492, 2002
  8. Young Lim Lee, " An Analysis of Engine Cooling using a Three-dimensional Radiator Model" Jounal of KSAE, Vol.4, pp.10-17, 2003
  9. Catia, V5R17, Dassault Systems, 2006.
  10. Gambit, Fluent, Unc, Lebanon. NH 2005.
  11. Ansys Fluent version 12.1 Ansys Inc,. NH 2009.