DOI QR코드

DOI QR Code

Characteristics of Titanium Dioxide-Impregnated Fibrous Activated Carbon and Its Application for Odorous Pollutant

이산화티타늄 담지 섬유형 활성탄소의 특성 및 악취오염물질 제어를 위한 응용

  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University) ;
  • Hwang, Eun-Song (Department of Environmental Engineering, Kyungpook National University) ;
  • Yang, Sung-Bong (Department of Chemistry, College of Natural Science, University of Ulsan)
  • Received : 2011.02.11
  • Accepted : 2011.03.11
  • Published : 2011.03.31

Abstract

The application of fibrous activated carbon (FAC)-titanium dioxide ($TiO_2$) hybrid system has not been reported yet for the control of malodorous dimethyl sulfide (DMS) at residential environmental levels. Accordingly, the current study was designed not only to characterize this hybrid system using x-ray diffraction method, particulate surface measurement and Fourier transform Infrared (FTIR) method, but also to evaluate its adsorptional photocatalytic activity (APA) for the DMS removal. The physical/surface characteristics of FAC-$TiO_2$ which was prepared in this study suggested that the hybrid material might have certain APA for DMS. The Brunauer-Emmett-Teller (BET) specific area, total pore volume, micropore volume and mesopore volume decreased all as the $TiO_2$ amounts coated on FAC increased, whereas the reverse was true for average pore diameter. $TiO_2$ coated onto FAC did not influence the adsorptional activity of FAC for the DMS input concentration of 0.5 ppm. The APA test of the hybrid material presented that the initial removal efficiencies of DMS were 93, 78, 71 and 57% for the flow rates of 0.5, 1.0, l.5 and 2.0 L/min, respectively, and they decreased somewhat 2 h after the experiment started and kept almost constant for the rest experimental period. Under this pseudo-equilibrium condition, the DMS removal efficiencies were 78, 58, 53 and 36% for the four flow rates, respectively. Meanwhile, there were no significant byproducts observed on the surfaces of the hybrid material. Consequently, this study suggests that, under the experimental conditions used in the present study, the hybrid material can be applied for DMS at residential environment levels without being interfered by any byproducts.

생활환경 수준의 이황화 메틸과 같은 황화 유기화합물의 제어를 위하여 섬유형 활성탄소-이산화 티타늄 복합재를 이용한 연구는 아직까지 보고되지 않고 있다. 따라서, 본 연구에서는 섬유형 활성탄소-이산화 티타늄 복합재를 제조하여 엑스선 회절법, 입자 비표면 측정법 및 적외선 분광법을 이용하여 광학적/표면 특성을 조사하고 활성을 평가하기 위하여 황화 이메틸의 제거 효율을 결정하였다. 섬유형 활성탄소-이산화티타늄 복합재의 물리적/표면 특성 조사에서 이 복합재가 광촉매적 활성도를 가지는 것으로 나타났다. 비표면적, 총 기공크기, 마이크로 기공크기 및 메조 기공크기의 경우에 이산화티타늄 코팅량이 증가함에 따라 감소하는 경향을 나타내었다. 그러나 평균 기공크기는 이산화티타늄 코팅량이 증가함에 따라 오히려 증가하였다. 또한, 코팅된 이산화티타늄이 섬유형 활성탄소 자체의 황화 이메틸에 대한 흡착능에 영향을 거의 미치지 않는 것으로 나타났다. 섬유형 활성탄소-이산화티타늄 복합재의 활성도 조사시험에서, 황화 이메틸의 초기 제거효율은 4가지 유량 조건(0.5, 1.0, 1.5, 2.0 L/min)에서 각각 93, 78, 71 및 57%로 나타났고, 4가지 유량 조건 모두에서 2시간째에는 제거효율이 다소 감소하였다가 그 이후에는 거의 일정하게 유지되었다. 유사 평형상태에서, 황화 이메틸 평균 제거효율은 4가지 유량조건에서 각각 75, 58, 53 및 36%로 나타났다. 한편, 섬유형 활성탄소-이산화티타늄 복합재의 표면상에서 부산물들은 관찰되지 않았다. 따라서, 본 연구에서 이용한 실험 조건에서, 섬유형 활성탄소-이산화티타늄 복합재가 부산물에 의한 큰 영향 없이 생활환경 수준의 황화 이메틸을 제어하는데 활용될 수 있는 것으로 제안된다.

Keywords

References

  1. Millot, J. -L., Brand, G., and Morand, N., "Effects of ambient odors on reaction time in humans," Neurosci. Lett., 322, 79-82 (2002). https://doi.org/10.1016/S0304-3940(02)00092-7
  2. Sucker, K., Both, R., Bischoff, M., Guski, R., Krämer, U., and Winneke, G., "Odor frequency and odor annoyance Part II: dose response associations and their modification by hedonic tone," Int. Arch. Occup. Environ. Health, 81, 683-694 (2008). https://doi.org/10.1007/s00420-007-0262-4
  3. Sucker, K., Both, K., and Winneke, G., "Review of adverse health effects of odours in field studies," Water Sci. Technol., 59, 1281-1289 (2009). https://doi.org/10.2166/wst.2009.113
  4. Hanajima, D., Kuroda, K., Morishita, K., Fujita, J., Maeda, K., and Morioka, R., "Key odor components responsible for the impact on olfactory sense during swine feces composting," Biores. Technol., 101, 2306-2310 (2010). https://doi.org/10.1016/j.biortech.2009.11.026
  5. Easter, C., Quigley, C., Burrowes, P., Witherspoon, J., and Apgar, D., "Odor and air emissions control using biotechnology for both collection and wastewater treatment systems," Chem. Eng. J., 113, 93-104 (2005). https://doi.org/10.1016/j.cej.2005.04.007
  6. Nicell, J. A., "Assessment and regulation of odour impacts," Atmos. Environ., 43, 196-206 (2009). https://doi.org/10.1016/j.atmosenv.2008.09.033
  7. Aatamila, M., Verkasalo, P. K., Korhonen, M. J., Suominen, A. L., Hirvonen, M. -R., Viluksela, M. K., and Nevalainen, A., "Odour annoyance and physical symptoms among residents living near waste treatment centres," Environ. Res., 111, 164-170 (2011). https://doi.org/10.1016/j.envres.2010.11.008
  8. Baek, S. -W., Kim, J. -R., and Ihm, S. -K., "Design of dual functional adsorbent/catalyst system for the control of VOC''s by using metal-loaded hydrophobic Y-zeolites," Catal. Today, 93-95, 575-581 (2004). https://doi.org/10.1016/j.cattod.2004.06.107
  9. Edouarda, D., Hammouri, H., and Zhou, X. G., "Control of a reverse flow reactor for VOC combustion," Chem. Eng. Sci., 60, 1661-1672 (2005). https://doi.org/10.1016/j.ces.2004.10.020
  10. Hunger, M., Husken, G., and Brouwers, H. J. H., "Photocatalytic degradation of air pollutants - From modeling to large scale application," Cem. Conc. Res., 40, 313-320 (2010). https://doi.org/10.1016/j.cemconres.2009.09.013
  11. Jo, W. K., and Kim, J. T., "Photocatalysis of low concentration of gaseous-phase benzene using visible-light irradiated Ndoped and S-doped titanium dioxide," Environ. Eng. Res., 13, 171-176 (2008). https://doi.org/10.4491/eer.2008.13.4.171
  12. Ao, C. H., and Lee, S. C., "Enhancement effect of $TiO_2$M immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level," Appl. Catal. B, 44, 191-205 (2003). https://doi.org/10.1016/S0926-3373(03)00054-7
  13. Shiraishi, S., Yamaguchi, Y., and Ohbuchi, A., "Rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus," Chem. Eng. Sci., 58, 929-934 (2003). https://doi.org/10.1016/S0009-2509(02)00630-9
  14. Tao, Y., Wu, C. -Y., and Mazyck, D. W., "Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration," Chemosphere, 65, 35-42 (2006). https://doi.org/10.1016/j.chemosphere.2006.03.019
  15. Areerachakul, N., Vigneswaran, S., Ngo, H. H., and Kandasamy, J., "Granular activated carbon (GAC) adsorption-photocatalysis hybrid system in the removal of herbicide from water," Sep. Purif. Technol., 55, 206-211 (2007). https://doi.org/10.1016/j.seppur.2006.12.007
  16. Guo, T., Bai, Z., Wu, C., and Zhu, T., "Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by $TiO_2$ loaded on activated carbon fibers: PCO rate and intermediates accumulation," Appl. Catal. B, 79, 171-178 (2008). https://doi.org/10.1016/j.apcatb.2007.09.033
  17. Liu, J. -H., Yang, R., and Li, S. -M., "Preparation and application of efficient $TiO_2/ACFs$ photocatalyst," J. Environ. Sci., 18, 979-982 (2006). https://doi.org/10.1016/S1001-0742(06)60025-9
  18. Dwivedi, P., Gaur, V., Sharma, A., and Verma, N., "Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon filter," Sep. Purif. Technol., 39, 23-27 (2004). https://doi.org/10.1016/j.seppur.2003.12.016
  19. Higgins, M. J., Chen, Y. C., Yarosz, D. P., Murthy, S. N., Maas, N. A., Glindemann, D., and Novak, J. T., "Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors," Water Environ. Res., 78, 243-252 (2006). https://doi.org/10.2175/106143005X90065
  20. Kim, K. Y., Ko, H. J., Kim, H. T., Kim, Y. S., Roh, Y. M., Lee, C. M., Kim, H. S., and Kim, C. N., "Sulfuric odorous compounds emitted from pig-feeding operations," Atmos. Environ., 41, 4811-4818 (2007). https://doi.org/10.1016/j.atmosenv.2007.02.012
  21. Chiaramonte, T., Abramof, E., Fabreguette, F., Sacilotti, M., and Cardoso, L. P., "X-ray multiple diffraction in the characterization of TiNO and $TiO_{2}$ thin films grown on Si (00 1)," Appl. Surf. Sci., 253, 1590-1595 (2006). https://doi.org/10.1016/j.apsusc.2006.02.064
  22. Kaczmarek, D., Domaradzki, J., Wojcieszak, D., Wasielewski, R., Borkowska, A., Prociowa, E. L., and Ciszewski, A., "Structural investigations of $TiO_2$:Tb thin films by X-ray diffraction and atomic force microscopy," Appl. Surf. Sci., 254, 4303-4307 (2008). https://doi.org/10.1016/j.apsusc.2008.01.018
  23. Liu, S., Chen, X., and Chen X., "Preparation of N-Doped visible-light response nanosize $TiO_2$ photocatalyst using the acid-catalyzed hydrolysis method," Chin. J. Catal., 27, 697- 702 (2006). https://doi.org/10.1016/S1872-2067(06)60037-5
  24. Sivakumar, S., Pillai, P. K., Mukundan, P., and Warrier, K. G. K., "Sol-gel synthesis of nanosized anatase from titanyl sulfate," Mater. Lett., 57, 330-335 (2002). https://doi.org/10.1016/S0167-577X(02)00786-3
  25. Nuria, G. -G., Jose, A. A., Xavier, D., and Jose, P., "$TiO_2$ deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide," Appl. Catal. B, 52, 69-77 (2004). https://doi.org/10.1016/j.apcatb.2004.03.016
  26. Van Gerven, T., Mul, G., Moulijn, J., and Stankiewicz, A., "A review of intensification of photocatalytic processes," Chem. Eng. Proc., 46, 81-789 (2007).
  27. Yang, R., Zhang, Y., Xu, Q., and Mo, J., "A mass transfer method for measuring the reaction coefficients of a photocatalyst," Atmos. Environ., 41, 1221-1229 (2007). https://doi.org/10.1016/j.atmosenv.2006.09.043
  28. Obee, T. N., and Brown, R. T., "$TiO_2$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene," Environ. Sci. Technol., 29, 1223-1231 (1995). https://doi.org/10.1021/es00005a013