DOI QR코드

DOI QR Code

Differential Physiological Activity in Different Ages of Panax ginseng

재배인삼의 연령별 생리활성 차이 연구

  • Chon, Sang-Uk (EFARINET Co. LTD., BI Center, Chosun University) ;
  • Kim, Young-Min (Dongeuinara Co. Ltd., Biotechnology Industrialization Center, Dongshin University)
  • 천상욱 (조선대학교 BI센터 (주)이파리넷) ;
  • 김영민 (동신대 BIC센터 동의나라(주))
  • Received : 2011.02.07
  • Published : 2011.03.30

Abstract

Panax ginseng has been used as a traditional medicine for several centuries in Korea. A laboratory experiment using methanol extracts of freeze-dried leaves and roots in the different ages of P. ginseng was conducted to determine the content of phenolics and flavonoids, antioxidant activity and cytotoxicity. The results indicate that the total phenolics level [mg ferulic acid equivalents (FAE) $kg^{-1}$ DW] was higher in leaves (22.0 to 76.3 mg $kg^{-1}$) than roots (19.0 to 28.3 mg $kg^{-1}$) of P. ginseng. The total content of phenolics in roots increased with increase in age of P. ginseng from one to six years. However, the content of phenolics in P. ginseng leaf decreased with the increase in age. Total flavonoid [mg naringin equivalents $kg^{-1}$ DW] was more detected in the leaves (30.3 to 138.6 mg $kg^{-1}$) than in the roots (0.0 to 10.6 mg $kg^{-1}$) of P. ginseng. The total flavonoid level in leaves decreased with increase in age of P. ginseng. The antioxidant potential of the methanol extracts from the plants dose-dependently increased. DPPH free radical scavenging activity was higher in leaves (36.9 to 82.8%) than in roots (14.8 to 39.4%), and in young plants than in old ones. According to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the methanol extracts from 5 year-root part showed the highest cytotoxicity against Calu-6, followed by 2 year- and 3 year-roots. However, the methanol extracts from 6 year- and 4 year-roots had lower cytotoxicity. Total phenolics content in both leaves and roots was highly correlated with the DPPH radical scavenging ($r^2=0.7366$ to 0.7870) and nitrite scavenging ($r^2=0.5604$ to 0.8794) activities, suggesting that they contribute to the antioxidant properties of the P. ginseng plants.

인삼을 지하부는 물론 지상부 경엽 부위를 채소용 또는 식품첨가물로 이용하기 위해 낮은 연령 인삼의 지상부 및 지하부의 메탄올 추출물을 이용한 생리활성물질 함량, 항산화성 및 세포독성을 분석하였다. 연령별 인삼의 초장, 근장, 근직경, 지상부 및 지하부 생체중을 기준으로 생육의 차이가 뚜렷하였다. Folin-Denis 방법에 따라 인삼의 메탄올 추출물로부터 총페놀함량을 측정한 결과, 지상부(22.0 - 76.3 mg $kg^{-1}$)가 지하부(19.0 - 28.3 mg $kg^{-1}$)보다 높은 함량을 보였다. 특히, 지상부는 연령이 낮을수록 지하부는 연령이 높을수록 높은 함량을 보였다. 한편, 연령별 인삼의 총플라보노이드 함량은 역시 지상부(23.3 - 138.6 mg $kg^{-1}$)가 지하부(0 - 10.8 mg $kg^{-1}$) 보다 유의적으로 높은 함량을 보였다. 특히 지상부는 연령이 낮을수록 높은 함량을 보였고 지하부는 뚜렷한 경향을 보이지 않았다. 인삼연령별 항산화성을 분석한 결과 인삼의 지상부는 낮은 연령에서, 지하부는 높은 연령에서 높은 DPPH 라디컬 소거능을 보였다. 특히, 지상부의 경우 3년생이 추출물 2,500 mg $kg^{-1}$에서 82.8%로 가장 높은 활성을 보였고 그 다음이 l년생 75.3%, 2년생 68.6% 순으로 높은 활성을 보였으나 나머지 4, 5, 6년생은 40% 이하의 낮은 활성을 보였다. 한편, 지하부(14.8-39.4%)는 지상부 보다 낮은 활성을 보였고, 5년생, 6년생, 4년생, 3년생, 2년생, 1년생 순으로 높은 활성을 보였다. 인삼연령별 세포독성은 연령과 무관한 것으로 나타났으며 폐암세포주(Calu-6)에 대한 5년근의 세포생장 억제율은 52.8%로 가장 높았고, 대장암 세포주(HCT-116)에 대한 억제율은 3년생에서 79.1%로 가장 높게 나타났다. 연령별 생체중은 생리활성물질 함량 및 항산화성에 관련이 있으며, 특히 항산화성을 나타내는 DPPH 라디컬 소거능($r^2=0.7366-0.7870$)과 아질산염 제거능($r^2=0.5604-0.8794$)은 총페놀함량과 각각 높은 상관관계를 보여 직접적으로 관련이 있는 것으로 나타났다.

Keywords

References

  1. Attele, A.S., Y.P. Zhou, J.T. Xie, J.A. Wu, L. Zhang, L. Dey, et al. 2002. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 51: 1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  2. Bao, J.S., Y. Cai, M. Sun, G.Y. Wang and H. Corke. 2005. Anthocyamins, flavonoids, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. Journal Agricultural and Food Chemistry 53: 2327-2332. https://doi.org/10.1021/jf048312z
  3. Blosi, M.S. 1958. Antioxidant determinations by use of a stable free radical. Nature 26: 1199-1200.
  4. Choi, C.S., K.I. Kim, H.D. Hong, S.Y. Choi, Y.C. Lee, K.T. Kim, J. Rho, S.S. Kim, and Y.C. Kim. 2006. Phenolic acid composition and antioxidative activity of white ginseng (Panax ginseng C.A. Meyer). J. Ginseng Res. 30: 22-30. https://doi.org/10.5142/JGR.2006.30.1.022
  5. Han, B.H., M.H. Park, Y.N. Han, and S.C. Shin. 1984. Studies on the antioxidant components of Korean ginseng, antifatigue active components. Yakhak Hoeji. 28: 231-235.
  6. Jeon, H.K., S.C. Kim, and N.P. Jung. 1991. Effects of ginseng saponin fraction and cyclophosphamide on the tumoricidal activity of mouse macrophage and the antitumor effect. Korean J. Ginseng Sci. 15: 99-105.
  7. Joo, C.N. and J.H. Kim. 1992. Study on the hypoglycemic action of ginseng saponin on streptozotocin induced diabetic rats (I). Korean J. Ginseng Sci. 16: 190-197.
  8. Jung, C.H., H.M. Seog, I.W. Choi and H.Y. Cho. 2005. Antioxidant activities of cultivated and wild Korean ginseng leaves. Food Chemistry. 92: 535-540. https://doi.org/10.1016/j.foodchem.2004.08.021
  9. Jung, C.H., H.M. Seog, I.W. Choi, M.W. Park and H.Y. Cho. 2006. Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT. 39: 266-274. https://doi.org/10.1016/j.lwt.2005.01.004
  10. Jung, M.Y., B.S. Jeon, and J.Y. Bock. 2000. Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginseng (Panax ginseng C.A. Meyer). Food Chem. 79: 105-111.
  11. Kang, S.Y. and N.D. Kim. 1992. The antihypertensive effect of red ginseng saponin and the endothelium-derived vascular relaxation. Korean J. Ginseng Sci. 16: 175-182.
  12. Keum, Y.S., S.S. Han, K.S. Chun, K.K. Park, J.H. Park, S.K. Lee and Y.J. Surh. 2003. Inhibitory effects of the ginsenoside Rg(3) on phorbol ester-induced cyclooxygenase-2 expression. Mutat Res. 75-85: 523-524.
  13. Kim, D.J. and C.C. Chang. 1994. The effects of red ginseng extracts on antioxidant enzyme activities and lipid peroxidation of the kidney in $\gamma$-postirradiated mice. Korean J. Ginseng Sci. 18: 25-31.
  14. Kim, J.S., K.W. Kim, K.J. Choi, Y.K. Kwak, K.S. IM, K.M. Lee, and H.Y. Chung. 1996. Screening of antioxidative components from red ginseng saponing of antioxidative components from red ginseng saponin. Korean J. Ginseng Sci. 20: 173-178.
  15. Kim, K.H., Y.S. Lee, I.S. Jung, S.Y. Park, H.Y. Chung, I.R. Lee, and Y.S. Yun. 1998. Acidic polysaccharide from Panax ginseng, induces Th1 cell and macrophage cytokinines and generates LAK cells in synergy with rII-2. Planta Medica. 64: 110-115. https://doi.org/10.1055/s-2006-957385
  16. Kim, M.J. and N.P. Jung. 1987. The effect of ginseng saponin on the mouse immune system. Korean J. Ginseng Sci. 11: 130-135.
  17. Kim, S.H. and K.S. Park. 2003. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol. Res. 48: 511-513. https://doi.org/10.1016/S1043-6618(03)00189-0
  18. Kim, S.I., J.Y. Na, D.H. Jo, and C.Y. Lee. 1987. Extraction and purification of ginseng oligopeptides with antilipolytic actvities. Korean Agric. Chem Soc. 30: 88-94.
  19. Kim, Y.K., Q. Guo, and L. Packer. 2002. Free radical scavenging activity of red ginseng aqueous extracts. Toxicol. 172: 149-156. https://doi.org/10.1016/S0300-483X(01)00585-6
  20. Lee, J.W., H.O. Sohn, and J.H. Do. 2000. Function of the water soluble browning reaction products isolated from Korean red ginseng 2. Linoleic acid, Ox-brain autoxidant and $Fe^2+$ ADP/NAD system. J. Ginseng Res. 24: 35-40.
  21. Lee, S.E., S.W. Lee, J.K. Bang, Y.J. Yu, N.S. Seong. 2004. Antioxidant activities of leaf, stem and root of Panax ginseng C. A. Meyer. Kor. J. Medicinal Crop Sci. 12(3): 237-242.
  22. Ng, T.B. and H. Wang. 2001. Panaxagin, a new protein from Chinese ginseng possesses antifungal, anti-viral, translationinhibiting and ribonuclease activities. Life Science. 68: 739-749. https://doi.org/10.1016/S0024-3205(00)00970-X
  23. Oliveira, A.C.C., A.C. Perez, G. Merino, J.G. Priet, and A.I. Alvarez. 2001. Protective effects of Panax ginseng on muscle injury and inflammation after eccentric exercise. Comparative Biochemistry and Physiology Part C. 130: 369-377.
  24. Park, H.S., T.H. Kwak, D.G. Moon, J.J. Kim and J. Chen. 2004. Development of the anti-cancer immunotheraphy for human prostate cancer: in vivo characterization of an immunotropic and anti-cancer activities of the new polysaccharide from the leaves of Panax ginseng C. A. Meyer. European Urology Supplements. 2: 94-99.
  25. Park, S.N., S.W. Choi, Y.C. Boo, C.K. Kim and T.Y. Lee. 1990. Effects of flavonoids of ginseng leaves on erythrocyte membranes against singlet oxygen caused damage. Korean Journal of Ginseng Science. 14: 191-199.
  26. Popovich, D.G. and D.D. Kitts. 2004. Generation of ginsenosides $Rg_3$ and $Rh_2$ from North American ginseng. Phytochemistry. 65: 337-344. https://doi.org/10.1016/j.phytochem.2003.11.020
  27. Samukawa, K., H. Yamashita, H. Matsuda and M. Kubo. 1995. Simultaneous analysis of ginsenosides of various ginseng radix by HPLC. Yakugaku Zasshi. 115: 241-249.
  28. SAS (Statistical Analysis Systems) Institute. 2000. SAS/STAT user's guide. Version 7. Electronic Version. Cary, NC, USA.
  29. Shi, W., Y. Wang, J. Li, H. Zhang and L. Ding. 2007. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food chemistry. 102: 664-668. https://doi.org/10.1016/j.foodchem.2006.05.053
  30. Shin, J.Y., J.Y. Song, Y.S. Yun, H.O. Yang, D.K. Rhee and S. Pyo. 2002. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol Immunotoxicol. 24: 469-475. https://doi.org/10.1081/IPH-120014730
  31. Singleton, V.L. and J.A. Rossi. 1965. A colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 14
  32. Song, J.Y., S.K. Han, E.H. Son, S.N. Pyo, Y.S. Yun and S.Y. Yi. 2002. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int Immunopharmacol. 2: 857-865. https://doi.org/10.1016/S1567-5769(01)00211-9
  33. Sonoda, Y., T. Ksahara, N. Mukaida, N. Shimizu, M. Tomoda, and T. Takeda. 1998. Stimulation of interlukin-8 production by acidic polysaccharides from the root of Panax ginseng. Immunopharmacol. 38: 287-293. https://doi.org/10.1016/S0162-3109(97)00091-X
  34. Tian, Q., E.G. Miller, H. Ahmad, L. Tang, and B.S. Patil. 2001. Differential inhibition of human cancer cell proliferation by citrus limonoids. Nutr. Cancer 40: 180-184. https://doi.org/10.1207/S15327914NC402_15
  35. Wang, A., C.Z. Wang, J.A. Wu, J. Osinski and C.S. Yuan. 2005. Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography, Phytochemical Analysis. 16: 272-277. https://doi.org/10.1002/pca.838
  36. Wang, H.C., C.R. Chen and C.J. Chang. 2001. Carbon dioxide extraction of ginseng root hair oil and ginsenosides. Food chemistry. 72: 505-509. https://doi.org/10.1016/S0308-8146(00)00259-4
  37. Wee, J.J., J.D. Park, M.W. Kim, and H.J. Lee. 1989. Identification of phenolic antioxidant components isolated from Panax ginseng. J. Korean Agric. Chem. Sco. 32: 50-56.
  38. Woo, L.K., Y. Nakamura and L. Donat. 1965. Effect of Korean Ginseng on the Growth Rate of Cell. Arch. Ital. Patol. Clin. Tumori. 8: 53-60.
  39. Xie, J.T., S.R. Mehendale, A. Wang, A.H. Han, J.A. Wu, J. Osinski and C.S. Yuan. 2004. American ginseng leaf: Ginsenoside analysis and hypoglycemic activity. Pharmacological Research. 49: 113-117. https://doi.org/10.1016/j.phrs.2003.07.015
  40. 김익제, 김학현. 1969. Walker Carcinosarcoma 256 백서 골수 이식에 미치는 고려 인삼의 영향. 카톨릭 의대 논문집. 16: 161-166.
  41. 농촌진흥청. 토양 및 식물체 분석법. 2000. 농업과학기술원, 농촌진흥청 pp 202.
  42. 오상환, 박광균. 1995. 홍삼투여가 발효식품 속에 들어있는 우레탄 대사산물에 의한 피부종양에 미치는 영향. 고려인삼의 연구(보고서). pp. 323.
  43. 이병무, 이승기, 김형식. 1998. Inhibition of oxidative DNA damage, 8-OHdG, and carbonyl contents in smokers treated with antioxidants (vitamin E, vitamin C, beta-carotene and red ginseng). Cancer Letter. 132: 219-224. https://doi.org/10.1016/S0304-3835(98)00227-4
  44. 이열남, 이호영, 이유미, 김신일, 김영숙, 김규원. 1997. Ginsenosides에 의한 F9 기형암종세포의 분화유도 과정에서 cAMP의 작용. 고려인삼학회지. 21: 141-146.

Cited by

  1. Comparison of Ginsenoside Content According to Age and Diameter in Panax ginseng C. A. Meyer Cultivated by Direct Seeding vol.21, pp.3, 2013, https://doi.org/10.7783/KJMCS.2013.21.3.184
  2. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years vol.40, pp.1, 2016, https://doi.org/10.1016/j.jgr.2015.05.006
  3. 와송(Orostachys japonicus) 용매별 분획 추출물의 항산화, 항균 및 암세포 독성 비교 vol.30, pp.2, 2017, https://doi.org/10.7732/kjpr.2017.30.2.133
  4. Near infrared estimation of concentration of ginsenosides in Asian ginseng vol.27, pp.2, 2011, https://doi.org/10.1177/0967033518814851
  5. 재배년수에 따른 인삼의 생육특성, 생리활성, 성분의 변화 vol.27, pp.6, 2019, https://doi.org/10.7783/kjmcs.2019.27.6.383