DOI QR코드

DOI QR Code

Distribution of Photovoltaic Energy Including Topography Effect

지형 효과를 고려한 지표면 태양광 분포

  • Jee, Joon-Bum (Department of Applied Meteorology, National Institute of Meteorological Research) ;
  • Zo, Il-Sung (Department of Atmospheric and Environmental Sciences, Gangnung-Wonju National University) ;
  • Lee, Kyu-Tae (Department of Atmospheric and Environmental Sciences, Gangnung-Wonju National University) ;
  • Choi, Young-Jean (Department of Applied Meteorology, National Institute of Meteorological Research)
  • 지준범 (국립기상연구소 응용기상과) ;
  • 조일성 (강릉원주대학교 자연과학대학 대기환경과학과) ;
  • 이규태 (강릉원주대학교 자연과학대학 대기환경과학과) ;
  • 최영진 (국립기상연구소 응용기상과)
  • Received : 2011.01.17
  • Accepted : 2011.04.07
  • Published : 2011.04.29

Abstract

A photovoltaic energy map that included a topography effect on the Korean peninsula was developed using the Gangneung-Wonju National University (GWNU) solar radiation model. The satellites data (MODIS, OMI and MTSAT-1R) and output data from the Regional Data Assimilation Prediction System (RDAPS) model by the Korea Meteorological Administration (KMA) were used as input data for the GWNU model. Photovoltaic energy distributions were calculated by applying high resolution Digital Elevation Model (DEM) to the topography effect. The distributions of monthly accumulated solar energy indicated that differences caused by the topography effect are more important in winter than in summer because of the dependency on the solar altitude angle. The topography effect on photovoltaic energy is two times larger with 1 km resolution than with 4 km resolution. Therefore, an accurate calculation of the solar energy on the surface requires high-resolution topological data as well as high quality input data.

지형 효과가 포함된 태양복사 모델(GWNU)을 이용한 한반도의 태양광 자원지도를 개발하였다. 태양복사 모델의 입력 자료는 위성 관측 자료(MODIS, OMI, MTSAT-1R)와 수치 모델(RDAPS) 자료를 사용하였으며 특히 고해상도 지형 자료를 이용하여 지형 효과에 따른 한반도의 지표면 태양광 변화를 계산하였다. 계산 결과를 월 및 연 누적하여 분석하였을 때 여름철은 태양 고도각이 높아 지형 효과에 영향이 10% 이하로 적은 반면 겨울철은 20% 이상의 큰 차이가 나타났다. 또한 4 km 해상도의 지표면 태양광의 경우보다 1 km 해상도의 경우 지형 효과 포함에 따른 태양광 차이가 약 2배 정도 크게 나타났다. 즉 지표면에 도달하는 태양광을 정확히 모델링하기 위해서는 입력 자료뿐만 아니라 정확하고 고해상도의 지형 자료가 필연적이며 지형효과는 더욱 뚜렷이 나타나 실제와 유사할 것이다.

Keywords

References

  1. 기상청, 2009, 통신해양기상위성 기상자료처리시스템 개발 최종보고서. 기상청, 11-1360395-000192-10, 846 p.
  2. 조일성, 지준범, 이원학, 이규태, 최영진, 2010, 복사 모델에 의한 남한의 지표면 태양광 분포. 한국기후변화학회, 1, 147-161.
  3. Bird, R.E., 1984, A Simple Spectral Model for Direct Normal and Diffuse Horizontal Irradiance. Solar Energy, 1, 13-21.
  4. Chou, M.D. and Suarez M.J., 1999, A Solar Radiation Parameterization for Atmospheric Studies. NASA/TM-1999-104606, 15, 40 p.
  5. Dozier, J. and Frew, J., 1990, Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Transactions on Geoscience and Remote Sensing, 28, 963-969. https://doi.org/10.1109/36.58986
  6. Dubayah, R.C., 1994, Modeling a solar radiation topoclimatology for the Rio Grande River Basin. Journal of Vegetation Science, 5, 627-640. https://doi.org/10.2307/3235879
  7. Dubayah, R.C. and Rich, P.M., 1995, Topographic solar radiation models for GIS. International Journal of Geographical Information System, 9, 405-419. https://doi.org/10.1080/02693799508902046
  8. Fu, P. and Rich, P.M., 2000, Solar analyst user manual. Helios Environment Modeling Institute, Los Alamos, USA, 49 p.
  9. Garand, L., Turner, D.S., Larocque, M., Bates, J., Boukabara,S., Brunel, P., Chevallier, F., Deblonde, G.,Engelen, R., Hollingshead, M., Jackson, D., Jedlovec,G., Joiner, J., Kleespies, T., McKague, D.S., McMillin, L., Moncet, J.L., Pardo, J.R., Rayer, P.J., Salathe, E., Saunders, R., Scott, N.A., Van Delst, P., and Woolf, H., 2001, Radiance and Jacobian intercomparison of radiative transfer model applied to HIRS and AMSU channels. Journal of Geophysical Research, 24, 17-31.
  10. George, R. and Maxwell, E., 1999, High Resolution Maps of Solar Collector Performance using a Climatological Solar Radiation Model. Proceedings of the 1999 Annual Conference, American Solar Energy Society, Albuquerque, NM.
  11. Horn, B.K.P., 1981, Hill shading and the reflectance map. Proceedings of IEEE, 69, 14-47. https://doi.org/10.1109/PROC.1981.11918
  12. Hsia, Y.J. and Wang, W.S., 1985, Calcuation of potential solar irradiance on slopes(in Chinese with English summary).Taiwan Forestry Research Institute, Research Note 001, 22 p.
  13. Iqbal, M., 1983, An introduction to solar radiation. Academic Press, NY, USA, 391 p.
  14. Kamamura, H., Tanahashi, S., and Takahashi, T., 1998, Estimation of insolation over the Pacific Ocean off the Sanriku coast. Journal of Oceanography, 54, 457-464. https://doi.org/10.1007/BF02742448
  15. Kondratyev, J., 1969, Radiation in the Atmospheric. Academic Press, USA, 912 p.
  16. Lai, Y.J., Chou, M.D., and Lin, P.H., 2009, Parameterization of topographic effect on surface solar radiation. Journal of Geophysical Research, 115, D01104, doi:10.1029/2009JD012305.
  17. Maxwell, E.L., George, R., and Wilcox, S., 1998, A Climatological Solar Radiation Model. Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM.
  18. Michael, K., Pilz, U., and Raschke, E., 1978, A Modified Two-Stream Approximation for Computations of the Solar Radiation Budget in a Cloudy Atmosphere. Tellus, 30, 429-435. https://doi.org/10.1111/j.2153-3490.1978.tb00858.x
  19. Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., and Vignola, F., 2002, A New Operational Model for Satellite-Derived Irradiances: Description and Validation. Solar Energy, 73, 307-317. https://doi.org/10.1016/S0038-092X(02)00122-6
  20. Rich, P.M., Dubayah, R., Hetrick, W.A., and Saving, S.C., 1994, Using viewshed models to calculate intercepted solar radiation: Applications in ecology. American Society for Photogrammetry and Remote Sensing Technical papers, 524-529.
  21. Weymouth, G. and Le marshall, J., 1999, An Operational System to Estimate Global Solar Exposure over the Australian Region from Satellite Observation. Australia Meteorological Magazine, 48, 181-195.
  22. Zhou, Q. and Liu, X., 2004, Analysis of errors of derived slope and aspect related to DEM data properties. Computers and Geosciences, 30, 369-378. https://doi.org/10.1016/j.cageo.2003.07.005

Cited by

  1. Temperature Correction of Solar Radiation on Clear Sky Using by Modified Pyranometer vol.35, pp.1, 2015, https://doi.org/10.7836/kses.2015.35.1.009
  2. Estimation of Total Cloud Amount from Skyviewer Image Data vol.36, pp.4, 2015, https://doi.org/10.5467/JKESS.2015.36.4.330
  3. Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.233
  4. The Estimation of Monthly Average Solar Radiation using Sunshine Duration and Precipitation Observation Data in Gangneung Region vol.37, pp.1, 2016, https://doi.org/10.5467/JKESS.2016.37.1.29
  5. Exploring NDVI Gradient Varying Across Landform and Solar Intensity using GWR: a Case Study of Mt. Geumgang in North Korea vol.21, pp.4, 2013, https://doi.org/10.7319/kogsis.2013.21.4.073