DOI QR코드

DOI QR Code

Assessment of the Sorption Characteristics of Cadmium onto Steel-making Slag in Simulated Sea Water Using Batch Experiment

모사해수 조건에서 회분식 실험을 이용한 제강슬래그의 카드뮴 흡착 특성 평가

  • Kim, Eun-Hyup (Dept. of Civil & Environ. Eng., Seoul National Univ.) ;
  • Rhee, Sung-Su (Waste to Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research) ;
  • Lee, Gwang-Hun (Seoul National Univ., Engrg. Research Institute) ;
  • Kim, Yong-Woo (Dept. of Civil & Environ. Eng., Seoul National Univ.) ;
  • Park, Jun-Boum (Dept. of Civil & Environ. Eng., Seoul National Univ.) ;
  • Oh, Myoung-Hak (Korea Ocean Research & Development Institute)
  • 김은협 (서울대학교 건설환경공학부) ;
  • 이성수 (국립환경과학원 환경자원연구부 폐자원에너지연구과) ;
  • 이광헌 (서울대학교 공학연구소) ;
  • 김용우 (서울대학교 건설환경공학부) ;
  • 박준범 (서울대학교 건설환경공학부) ;
  • 오명학 (한국해양연구원 연안개발에너지연구부)
  • Received : 2010.11.08
  • Accepted : 2011.03.09
  • Published : 2011.04.30

Abstract

Steel-making slag was investigated as reactive material for removal of cadmium in coastal area. Batch experiments of the sorption isotherm experiment and kinetic sorption experiment were performed. Result of sorption isotherm was more adequately described by Langmuir model than Freundlich model and theoretical maximum capacity (${\beta}$) of cadmium onto steel-making slag was found. Results of kinetic sorption experiments were evaluated by pseudo second order model to investigate sorption characteristics of cadmium onto steel-making slag. Results showed that the equilibrium sorption amount of cadmium (q$q_e$) increased and the rate constant ($k_2$) and initial sorption rate (h) decreased as the initial cadmium concentration increased. The $q_e$ with simulated sea water was similar to that with deionized water and $k_2$ and h with simulated sea water was lower than those with deionized water. Results of kinetic experiments could be used to predict the result from sorption isotherm, since equilibrium sorption amounts calculated by pseudo second order model generally agreed with those measured from sorption isotherm. The reaction time for the target removal rate could be calculated by the pseudo second order model using kinetic sorption tests results.

본 연구에서는 국내 해안지역에 존재하는 카드뮴을 산업 폐기물인 제강슬래그를 이용하여 제거하고자, 제강슬래그의 카드뮴 제거 성능을 평가하였다. 이를 위해 회분식 실험으로 등온흡착 실험과 동적흡착 실험을 수행하였다. 등온 흡착 실험을 통해 제강슬래그의 카드뮴 제거는 Langmuir 모델이 Freundlich에 비해 잘 맞음을 확인하였고 최대 흡착량(${\beta}$)을 계산할 수 있었다. 동적흡착 실험결과의 경우, 유사이차 모델을 이용해 해석하였고 카드뮴의 초기농도가 높을수록 평형 흡착량 ($q_e$)은 증가하였고 반응상수 ($k_2$)와 초기반응속도 (h)는 줄어들었다. 모사해수 조건에서 $q_e$는 증류수 조건과 큰 차이가 없었지만 $k_2$와 h는 증류수에 비해 줄어들었다. 또한, 유사이차 모델을 통해 예측된 $q_e$이 등온흡착 실험에서 구한 평형 흡착량 ($C_s$)과 유사해 동적흡착 실험결과로 등온흡착 실험결과를 예측하는 것이 가능함을 확인하였으며 유사이차 모델을 이용해 목표 제거율에 도달하는 반응시간을 계산할 수 있었다.

Keywords

References

  1. 송영채, 이재원, 염혜경, 윤길림 (2003), "항만 준설토의 오염도 및 재활용 가능성 평가", 대한국폐기물학회 추계학술연구발표회논문집, pp.675-678.
  2. 한정상 (1998), "지하수환경과 오염", 박영사.
  3. Balistrieri, L. S. and Murray, J. W. (1982), "The adsorption of cu, Pb, Zn and Cd on goethite from major ion seawater", Geochimica et cosmochimica acta, Vol.46, pp.1253-1265. https://doi.org/10.1016/0016-7037(82)90010-2
  4. Balkaya, N. and Cesur, H. (2008), "Adsorption of cadmium from aqueous solution by phosphogypsum", Chemical engineering journal, Vol.140, pp.247-254. https://doi.org/10.1016/j.cej.2007.10.002
  5. Bujnoval, A. and Lesny, J. (2007), Sorption characteristic of zinc and cadmium by some natural, modified, and synthetic zeolites, Hungarian Electronic Journal of Sciences, HU ISSN 1418-7108, ENV-061123-A.
  6. Chaiyasith, S., Chaiyasith, P. and Septhum, C. (2006), "Removal of cadmium and nickel from aqueous solution by adsorption onto treated fly ash from Thailand", J. Sc. Tech., Vol.11, No.2, pp.13-20.
  7. Dimitrova, S. V. and Mehanjiev, D. R. (2000), "Interaction of blastfurnace slag with heavy metal ions in water solutions", Wat. Res., Vol.34, No.6, pp.1957-1961. https://doi.org/10.1016/S0043-1354(99)00328-0
  8. Gavaskar, A. R., Gupta, N., Sass, B. and Janosy, R. (1998), "Permeable barrier for groundwater remediation", Battle Press, Columbus, OH.
  9. Gupta, V. K., Rastogi, A., Dwivedi, M. K. and Mohan, D. (1997), "Process-Development for the Removal of Zinc and Cadmium from Waste-Water Using Slag - A Blast-Furnace Waste Material", Separation Science and Technology, Vol.32, No.17, pp.2883-2912. https://doi.org/10.1080/01496399708002227
  10. Ho, Y. S. and Mckay, G. (1999), "Pseudo-second order model for sorption process", Process biochemistry, Vol.34, pp.451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  11. Ho, Y. S. and Mckay, G. (2000), "The kinetics of sorption of divalent metal ions onto sphagnum moss peat", Wat. Res, Vol.34, No.3, pp.735-742. https://doi.org/10.1016/S0043-1354(99)00232-8
  12. Johnson, B. B. (1990), "Effect of pH, temperature, and concentration on the adsorption of cadmium on goethite", Environ. Sci. Technol., Vol.24, pp.112-118. https://doi.org/10.1021/es00071a014
  13. Lewis, G. P., Jusko, W. J. and Coughlin, L. L. (1972), "Cadmium accumulation in man: influence of smoking occupation alcoholic habit and disease", J Chron dis, Vol.25, pp.717-726. https://doi.org/10.1016/0021-9681(72)90007-0
  14. Ozacar, M. and Sengil, I. A. (2005) "A kinetic study of metal complex dye sorption onto pine sawdust", Process Biochemistry, Vol.40, pp.565-572 https://doi.org/10.1016/j.procbio.2004.01.032
  15. Park, D., Lim, S. R., Lee, H. W. and Park, J. M. (2008), "Mechanism and kinetics of Cr (VI) reduction by waste slag generated from iron making industry", Hydrometallurgy, Vol.93, pp.72-75. https://doi.org/10.1016/j.hydromet.2008.03.003
  16. Powell, R. M., Puls, R. W., Hightower, S. K. and Sabatini, D. A. (1995), "Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation", Environ. Sci. Technol, Vol.29, No.8, pp.1913-1922. https://doi.org/10.1021/es00008a008
  17. USEPA (1998), Permeable reactive barrier technologies for contaminant remediation, EPA 600-R-98-125, Washington, DC, US Environmental Protection Agency.
  18. USEPA (2002), Field Application of in situ remediation technologies: Permeable reactive barrier, EPA-542-R-99-002, Washington, DC, US Environmental Protection Agency.
  19. Weng, C. H. and Huang, C. P. (1994), "Treatment of metal industrial waste water by fly ash and cement fixation", J. Environ. Eng., Vol.120, No.6, pp.1470-1487. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:6(1470)
  20. Xue, Y., Hou, H. and Zhu, S. (2009), "Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag", Journal of Hazardous Materials, Vol.162, pp.391-401. https://doi.org/10.1016/j.jhazmat.2008.05.072

Cited by

  1. 규소 슬래그를 이용한 수용상 비소 흡착 제거 vol.46, pp.6, 2011, https://doi.org/10.9719/eeg.2013.46.6.521
  2. 반응성 배수파일이 타설된 지반의 압밀거동 분석 vol.15, pp.1, 2014, https://doi.org/10.14481/jkges.2014.15.1.13
  3. 회분식 실험을 통한 제지슬러지의 카드뮴 및 비소 흡착능 평가 vol.19, pp.1, 2014, https://doi.org/10.7857/jsge.2014.19.1.046
  4. 제올라이트와 제강슬래그에 의한 중금속과 영양염류 복합오염물질의 제거 효과 vol.15, pp.11, 2014, https://doi.org/10.14481/jkges.2014.15.11.13
  5. 단일 및 복합중금속용액에서 제강급랭슬래그의 경쟁흡착특성 vol.35, pp.1, 2011, https://doi.org/10.5338/kjea.2016.35.1.10
  6. Evaluation of the Efficiency of a Combination Media Filter in the Removal of Nonpoint Source Pollution vol.19, pp.1, 2011, https://doi.org/10.9798/kosham.2019.19.1.351