DOI QR코드

DOI QR Code

Mechanism and Control of Reaction Force Compensation of XY Linear Motion Stage System

XY 선형 모션 스테이지 시스템의 반발력 보상 기구와 제어

  • Received : 2010.07.21
  • Accepted : 2011.03.14
  • Published : 2011.06.01

Abstract

In this paper, a reaction-force compensation system for an XY linear motion stage, without an additional external isolation structure or extra motors, is developed. This system consists of a movable magnet track, a spring, a dummy weight, and a dedicated sensor module that measures the relative positions of the movable magnet track with respect to the motor coil. The reaction force compensation system is modeled, and simulations are carried out to optimize design parameters such as the moving distance of the magnet track, the transmission force, the dummy weight, and the allowed size of the mechanism. An XY linear motion stage is built, incorporating the reaction force compensation system, and the performance of the system is verified experimentally. For acceleration and deceleration values of 10 m/$s^2$, 85% of the reaction force is absorbed by the reaction force compensation system.

본 논문에서는 별도의 외부 격리 구조물이나 추가 모터가 필요 없는 XY 선형 모션 스테이지를 위한 반발력 보상 시스템을 개발하였다. 개발된 시스템은 이동 가능한 마그넷 트랙, 스프링, 추가 질량을 포함한 자체 반발력 보상 구조를 가지고 있으며 이송용 모터 코일과 마그넷 트랙의 상대 위치를 검출할 수 있는 전용 센서를 개발하여 고정밀 추력 및 위치를 제어에 적용하였다. 먼저 반발력 보상 시스템을 모델링하고 모의 시험을 통해 이동 거리, 가속도, 하중, 허용 가능한 장비 크기와 같은 설계 요소를 최적화 하였다. 반발력 보상 시스템이 구비된 XY 모션 스테이지를 제작하였으며, 해당 시스템의 성능을 실험적으로 검증하였다. 실험결과 10m/$s^2$ 가감속 시에 85%의 반발력이 반발력 보상 시스템에 의해 흡수되었다.

Keywords

References

  1. Dijkstra, B. G., Rambaratsingh, N. J., Scherer, C. W., Bosgra, O. H., Steinbuch, M. and Kerssemakers, S., 2001, "Input Design for Optimal Discrete Time Point- To-Point Motion of an Industrial XY-Positioning Table," Selected Topics in Signals, Systems and Control, Vol.12, pp. 9-14.
  2. Tseng, Y. T. and Liu, J. H., 2003, "High-speed and Precise Positioning an X-Y Table," Control Engineering Practice, Vol. 11, No. 4, pp. 357-365. https://doi.org/10.1016/S0967-0661(02)00109-0
  3. Kwac, L. K., Kim, J. Y., Yang, D. J., Ko, M. S., You, S. and Kim, K. T., 2002, "Optimal Design of Controller for Ultra-Precision Plane X-Y Stage," Proc. of the KSPE Spring Conference, pp. 342-347.
  4. Jang, J. W., Park, S. W. and Hong, S. W., 2008, "Command Generation Method for High-speed and Precise Positioning of Positioning Stage," Journal of the Korean Society for Precision Engineering, Vol.25, No.10, pp. 122-129.
  5. Greene, P. M., Hero, S., Bittner D. (Dover Instrument Corporation), 2005, "Reaction Force Transfer System," United States Patent, US006844635B2, pp. 1-4.
  6. Lee, M. E. (Nikon Corporation) 1998, "Guideless Stage with Isolated Reaction Frame," United States Patent, US005744924A, pp. 1-18.
  7. Qsanai, E. and Akutsu, K. (Canon Kabushiki Kaisha), 1999, "Stage Apparatus and Exposure Apparatus and Device Producing Method Using the Same," United States Patent, US005864389A, pp. 01-16.
  8. Galburt, D. N. (ASML US Inc.), 2004, "Method, System, and Apparatus for Management of Reaction Loads in a Lithography System," United States Patent, US006784978B2, pp. 01-32.
  9. Poon, A. K. T., Kho, L. W. F., Yang, P.-H., Chang, P.-W., (Nikon Corporation), 2005, "Modular Stage with Reaction Force Cancellation," United States Patent, US006917412B2, pp. 01-26.
  10. Binnard, M. (Nikon Corporation), 2003, "Stage Assembly Including a Reaction Assembly that is connected by Actuators," United States Patent, US006603531B1, pp. 01-23.

Cited by

  1. Dynamic analysis and iterative design of a passive reaction force compensation device for a linear motor motion stage vol.15, pp.11, 2014, https://doi.org/10.1007/s12541-014-0602-8
  2. A passive reaction force compensation (RFC) mechanism for a linear motor motion stage vol.15, pp.5, 2014, https://doi.org/10.1007/s12541-014-0402-1
  3. A Passive Reaction Force Compensation Mechanism for a Linear Motor Motion Stage using an Additional Movable Mass vol.31, pp.10, 2014, https://doi.org/10.7736/KSPE.2014.31.10.929
  4. A Fuzzy-P controller of an active reaction force compensation (RFC) mechanism for a linear motor motion stage vol.16, pp.6, 2015, https://doi.org/10.1007/s12541-015-0138-6
  5. Semi-active reaction force compensation for a linear motor motion stage vol.17, pp.7, 2016, https://doi.org/10.1007/s12541-016-0104-y
  6. Eddy current damper type reaction force compensation mechanism for linear motor motion stage vol.3, pp.1, 2016, https://doi.org/10.1007/s40684-016-0009-3
  7. Eddy current damper for passive reaction force compensation of a linear motor motion stage vol.231, pp.5, 2017, https://doi.org/10.1177/0959651816650568
  8. Multi-Physical Analysis of Eddy Current Damper (ECD) for Reaction Force Compensation Device vol.300-301, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.300-301.920
  9. A variable stiffness mechanism for a movable magnet track of a linear motor stage vol.31, pp.11, 2017, https://doi.org/10.1007/s12206-017-1013-4