DOI QR코드

DOI QR Code

Development of a Cooling System for a Concentrating Photovoltaic Module

고집광 태양전지 모듈의 냉각시스템 개발

  • Kim, Tae-Hoon (Energy Plant Research Division, Korea Institute of Machinery and Materials) ;
  • Do, Kyu-Hyung (Energy Plant Research Division, Korea Institute of Machinery and Materials) ;
  • Choi, Byung-Il (Energy Plant Research Division, Korea Institute of Machinery and Materials) ;
  • Han, Yong-Shik (Energy Plant Research Division, Korea Institute of Machinery and Materials) ;
  • Kim, Myung-Bae (Energy Plant Research Division, Korea Institute of Machinery and Materials)
  • 김태훈 (한국기계연구원 에너지플랜트연구본부) ;
  • 도규형 (한국기계연구원 에너지플랜트연구본부) ;
  • 최병일 (한국기계연구원 에너지플랜트연구본부) ;
  • 한용식 (한국기계연구원 에너지플랜트연구본부) ;
  • 김명배 (한국기계연구원 에너지플랜트연구본부)
  • Received : 2010.05.25
  • Accepted : 2011.03.28
  • Published : 2011.06.01

Abstract

In this paper, a cooling system that includes a heat spreader and a natural convective heat sink is proposed for the cooling of a concentrating photovoltaic (CPV) module. The heat spreader and the natural convective heat sink are designed on the basis of previous analytical investigations. In order to evaluate the proposed cooling system, we conducted experimental investigations varying the heat rate and the inclined angle of the cooling system. From the experimental results, it is found that the proposed cooling system satisfies the design constraints for good operation of the CPV module. Finally, a correlation is suggested for estimating the effects of the heat rate and the inclined angle on the thermal performance of the natural convective heat sink is suggested.

본 연구에서는 열분산기 및 자연대류 히트 싱크로 구성된 집광형 태양전지 모듈용 냉각 장치를 제안하고자 한다. 이를 위해, 기존 연구자들의 해석적 연구를 바탕으로 집광형 태양전지 모듈용 열분산기 및 자연대류 히트 싱크를 설계하였다. 제안된 냉각 장치의 성능을 평가하기 위하여, 발열량과 수직 기준 경사각 변화에 따른 열성능 평가실험을 수행하였다. 실험결과로부터, 제안된 냉각 장치가 집광형 태양전지 모듈의 설계 조건을 만족하는 것을 확인하였다. 마지막으로 발열량과 수직기준 경사각 변화에 따른 자연대류 히트 싱크의 열성능을 예측할 수 있는 상관식을 제시하였다.

Keywords

References

  1. Lewis, N. S. et al., 2005, "Basic Research Needs For Solar Energy Utilization," Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April, 18-21.
  2. Royne, A. and Dey, C. J., 2007, "Design of a jet Impingement Cooling Device for Densely Packed PV Cells Under High Concentration," Solar Energy, Vol. 81, pp. 1014-1024. https://doi.org/10.1016/j.solener.2006.11.015
  3. Zubi, G., Bernal-Agustin, J. L. and Fracastoro, G. V., 2009, "High Concentration Photovoltaic Systems Applying III-V Cells," Renewable and Sustainable Energy Reviews, Vol. 13, pp. 2645-2652. https://doi.org/10.1016/j.rser.2009.07.002
  4. Shakouri, A. and Zhang, Y., 2005, "On Chip Solid State Cooling for Integrated Circuits," J. IEEE Trans. Components and Packaging Technologies, Vol. 28, pp. 65-69. https://doi.org/10.1109/TCAPT.2005.843219
  5. Anderson, W. G., Tamanna, S., Sarraf, D. B., Dussinger, P. M. and Hoffman Jr., R. W., 2008, "Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems," 6th IECEC, July, 28-30, 2008, Cleveland, Ohio.
  6. Gray, A., 2007, "Modeling a Passive Cooling System for Photovoltaic Cells Under Concentration," HT2007, July, 8-12, 2007, Vancouver, Canada.
  7. Min, C., Nuofu, C., Xiaoli, Y., Yu, W., Yiming, B. and Xingwang, Z., 2009, "Thermal Analysis and Test for Single Concentrator Solar Cells," Journal of Semiconductors, Vol. 30, No. 4, pp. 044011. https://doi.org/10.1088/1674-4926/30/4/044011
  8. Sun, J., Israeli, T., Reddy, T. A., Scoles, K., Gordon, J. M. and Feuermann, 2005, "Modeling and Experimental Evaluation of Passive Heat Sinks for Miniature High-Flux Photovoltaic Concentrators," ASME J. Solar Energy Engineering, Vol. 127, pp. 138-145. https://doi.org/10.1115/1.1785799
  9. Zhu, L., Wang, Y. Fang Z., Sun, Y. and Huang, Q., 2010, "An Effective Heat Dissipation Method for Densely Packed Solar Cells Under High Concentrations," Solar Energy Materials & Solar Cells, Vol. 94, pp. 133-140. https://doi.org/10.1016/j.solmat.2009.08.014
  10. Cheknane, A., Benyoucef, B. and Chaker, A., 2007, "Performance of Concentrator Solar Cells with Passive Cooling," Semicond. Sci. Technol., Vol. 21, pp. 144-147.
  11. Feng, T. Q. and Xu, J. L., 2004, "An Analytical Solution of Thermal Resistance of Cubic Heat Spreaders for Electronic Cooling," Applied Thermal Engineering, Vol. 24, pp. 323-337. https://doi.org/10.1016/j.applthermaleng.2003.07.001
  12. Muzychka, Y. S., Culham, J. R. and Yovanovich, M. M., 2003, "Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels," ASME J. Electronic Packaging, Vol. 125, pp. 178-185. https://doi.org/10.1115/1.1568125
  13. Bar-Cohen, A., Iyengar, M. and Kraus, A. D., 2003, "Design of Optimum Plate-Fin Natural Convective Heat Sinks," ASME J. Electronic Packaging, Vol. 125, pp. 208-216. https://doi.org/10.1115/1.1568361

Cited by

  1. Development of Heating Device Using Concentrator Solar Cells vol.38, pp.1, 2014, https://doi.org/10.3795/KSME-B.2014.38.1.049
  2. Optical Analysis for Designing a Planar Solar Concentrator Based on Light Guide System vol.36, pp.1, 2012, https://doi.org/10.3795/KSME-A.2012.36.1.009
  3. Perfonnance Evaluation of Swaged- and Extruded-type Heat Sinks Used in Inverter for Solar Power Generation vol.37, pp.10, 2013, https://doi.org/10.3795/KSME-B.2013.37.10.933