DOI QR코드

DOI QR Code

A Comparative Study of Commercial Catalysts for Methanol Steam Reforming

메탄올 수증기 개질반응에서의 상용촉매 비교연구

  • Park, Jung-Eun (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Park, Jae-Hyun (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Yim, Sung-Dae (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Chang-Soo (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Park, Eun-Duck (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University)
  • 박정은 (아주대학교 에너지시스템학부 화공.신소재공학부) ;
  • 박재현 (아주대학교 에너지시스템학부 화공.신소재공학부) ;
  • 임성대 (한국에너지기술연구원 연료전지센터) ;
  • 김창수 (한국에너지기술연구원 연료전지센터) ;
  • 박은덕 (아주대학교 에너지시스템학부 화공.신소재공학부)
  • Published : 2011.01.30

Abstract

The comparison work was conducted for the methanol steam reforming among commercial Cu-based catalysts, viz. ICI-M45, which is for the methanol synthesis, MDC-3 and MDC-7, which are for the water-gas shift reaction. The catalytic activity for the water-gas shift reaction was also compared over three catalysts. Among them, MDC-7 showed the highest methanol conversion and formation rate of hydrogen and carbon dioxide at 473 K for the methanol steam reforming. To find out any promotional effect between ICI-M45 and MDC-7, three different packing methods with these two catalysts were examined. However, no synergistic effect was observed. The catalytic activity for watergas shift reaction decreased in the following order: MDC-7 > MDC-3 > ICI-M45. The highest activity of MDC-7 for the methanol steam reforming as well as the water-gas shift reaction can be due to its high surface area, copper dispersion, and an adequate Cu/Zn ratio.

메탄올 수증기 개질반응에 대한 적용가능성을 파악하기 위하여 메탄올 합성용 촉매인 ICI-M45와 수성가스 전환반응용 촉매인 MDC-3와 MDC-7을 비교 연구하였다. 또한 수성가스전환 반응에 대한 세 촉매의 비교실험도 수행하였다. 그 결과 MDC-7이 메탄올 수증기 개질반응에서 가장 높은 전화율을 보였으며, $H_2$$CO_2$ 생성속도 또한 높게 나타났다. 수성가스 전환반응용 촉매인 MDC-7과 메탄올 합성촉매인 ICI-M45를 이용하여 촉매 충진 방법에 따른 메탄올의 전화율에서의 변화를 살펴본 결과, MDC-7 단독보다 낮은 메탄올의 전화율을 보였다. 수성가스 전환반응에서도 DC- 7, MDC-3, 그리고 ICI-M45의 순으로 반응성이 감소하였다. 상기 두 반응에서 MDC-7이 가장 우수한 이유로는 높은 비표면적과 Cu의 분산도, 그리고 적절한 Cu와 Zn의 비율에 기인함을 확인할 수 있었다.

Keywords

References

  1. Matsumura, Y. and Ishibe, H., "High Temperature Steam Reforming of Methanol over $Cu/ZnO/ZrO_2$ Catalysts," Appl. Catal. B: Environ., 91, 524-532(2009). https://doi.org/10.1016/j.apcatb.2009.06.023
  2. Sa, S., Silva, H., Brandao, L., Sousa, J. M. and Mendes, A., "The Catalysts for Methanol Steam Reforming," Appl. Catal. B: Environ., In Press.
  3. Meshkini, F., Taghizadeh, M. and Bahmani, M. "Investigating the Effect of Metal Oxide Addivites on the Properties of $Cu/ZnO/Al_2O_3$ Catalysts in Methanol Synthesis from Syngas Using Factorial Experimental Design," Fuel, 89, 170-175(2010). https://doi.org/10.1016/j.fuel.2009.07.007
  4. Peppley, B. A., Amphlett, J. C., Kearns, L. M. and Mann, R. F., "Methanol-steam Reforming on $Cu/ZnO/Al_2O_3$ Catalysts. Part 2. A Comprehensive Kinetic Model," Appl. Catal. A: Gen., 179, 31-49(1999). https://doi.org/10.1016/S0926-860X(98)00299-3
  5. Saito, M. and Murata, K., "Development of High Performance Cu/ZnO-Based Catalysts for Methanol Synthesis and the Watergas Shift Reaction," Catal. Surv. Asia, 8(4), 285-294(2004). https://doi.org/10.1007/s10563-004-9119-y
  6. Lee, J. W., Jeon, H. J. and Hong, S. C., "Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor," Clean Technol., 15(2), 130-136(2009).
  7. Figueiredo, R. T., Andrade, H. M. C. and Fierro, J. L. G., "Influence of the Preparation Methods and Redox Properties of $Cu/ZnO/Al_2O_3$ Catalysts for the Water Gas Shift Reaction," J. Mol. Catal. A: Chem., 318, 15-20(2010). https://doi.org/10.1016/j.molcata.2009.10.028
  8. Kurr, P., Kasatkin, I., Girgsdies, F., Trunschke, A., Schlogl, R. and Ressler, T., "Microstructural Characterization of $Cu/ZnO/Al_2O_3$ Catalysts for Methanol Steam Reforming-A Comparative Study," Appl. Catal. A: Gen., 348, 153-164(2008). https://doi.org/10.1016/j.apcata.2008.06.020
  9. Henpraserttae, S., Limthongkul, P. and Toochinda, P., "The Role of Urea in Cu-Zn-Al Catalysts for Methanol Steam Reforming," Monatsh Chem., 141, 269-277(2010). https://doi.org/10.1007/s00706-010-0256-x
  10. Chen, W. H. and Lin, B. J., "Effect of Microwave Double Absorption on Hydrogen Generation from Methanol Steam Reforming," Int. J. Hydrog. Energy, 35, 1987-1997(2010). https://doi.org/10.1016/j.ijhydene.2009.12.147
  11. Nishida, K., Atake, I., Li, D., Shishido, T., Oumi, Y., Sano, T. and Takehira, K., "Effects of Noble Metal-doping on $Cu/ZnO/Al_2O_3$ Catalysts for Water-gas Shift Reaction Catalyst Preparation by Adopting "memory effect" of Hydrotalcite," Appl. Catal. A: Gen., 337, 48-57(2008). https://doi.org/10.1016/j.apcata.2007.11.036
  12. Evans, J. W., Wainwright, M. S., Bridgewater, A. J. and Young, D. J., "On the Determination of Copper Surface Area by Reaction with Nitrous Oxide," Appl. Catal., 7, 75-83(1983). https://doi.org/10.1016/0166-9834(83)80239-5
  13. Jones., S. D., Neal, L. M. and Hagelin-Weaver, H. E., "Steam Reforming of Methanol Using Cu-ZnO Catalysts Supported on Nanoparticle Alumina," Appl. Catal. B: Environ., 84, 631-642(2008). https://doi.org/10.1016/j.apcatb.2008.05.023
  14. Lindstrom, B., Pettersson, L. J. and Govind Menon, P., "Activity and Characterization of Cu/Zn, Cu/Cr and Cu/Zr on $\gamma$-alumina for Methanol Reforming for Fuel Cell Vehicles," Appl. Catal. A: Gen., 234, 111-125(2002). https://doi.org/10.1016/S0926-860X(02)00202-8
  15. Shen, J. P. and Song, C., "Influence of Preparation Method on Performance of Cu/Zn-based Catalysts for Low-temperature Steam Reforming and Oxidative Steam Reforming of Methanol for $H_2$ Production for Fuel Cells," Catal. Today, 77, 89-98(2002). https://doi.org/10.1016/S0920-5861(02)00235-3
  16. Breen, J. P. and Ross, J. R. H., "Methanol Reforming for Fuel-cell Application: Development of Zirconia-containg Cu-Zn-Al Catalysts," Catal. Today, 51, 521-533(1999). https://doi.org/10.1016/S0920-5861(99)00038-3
  17. Zhang, X. R., Wang, l. C., Yao, C. A., Cao, Y., Dai, W. L., He, H. Y. and Fan, K. N., "A Highly Efficient $Cu/ZnO/Al_2O_3$ Catalyst Via Gel-coprecipitation of Oxalate Precursors for Low Temperature Steam Reforming of Methanol," Catal. Lett., 102, 183-190 (2005). https://doi.org/10.1007/s10562-005-5853-7
  18. Agarwal, V., Patel, S. and Pant, K. K., "$H_2$ Production by Steam Reforming of Methanol over $Cu/ZnO/Al_2O_3$ Catalysts: Transient Deactivation Kinetics Modeling," Appl. Catal. A: Gen., 279, 155-164(2005). https://doi.org/10.1016/j.apcata.2004.10.026
  19. Alejo, L., Lago, R., Pena, M. A. and Fierro, J. L. G., "Partial Oxidation of Methanol to Produce Hydrogen over Cu-Zn Based Catalysts," Appl. Catal. A: Gen., 162, 281-297(1997). https://doi.org/10.1016/S0926-860X(97)00112-9
  20. Huang, G., Liaw, B. J., Jhang, C. J. and Chen, Y. Z., "Steam Reforming of Methanol over $CuO/ZnO/CeO_2/ZrO_2/Al_2O_3$ Catalysts," Appl. Catal. A: Gen., 358, 7-12(2009). https://doi.org/10.1016/j.apcata.2009.01.031
  21. Huang, T. J. and Wang, S. W., "Hydrogen Production Via Partial Oxidation of Methanol Over Copper-zinc Catalysts," Appl. Catal., 24, 287-297(1986). https://doi.org/10.1016/S0166-9834(00)81276-2
  22. Wang, Z., Wang, W. and Lu, G., "Studies on the Active Species and on Dispersion of Cu in $Cu-SiO_2$ and $Cu-Zn-SiO_2$ for Hydrogen Production Via Methanol Partial Oxidation," Int. J. Hydrog. Energy, 28, 151-158(2003). https://doi.org/10.1016/S0360-3199(02)00043-5
  23. Seong, K. H., "A Study on Methanol Synthesis Through $CO_2$ Hydrogenation over Cu-based Catalysts, " Master Dissertation, Korea Advanced Institute of Science and Technology, Daejeon(1996).
  24. Kudo, S., Maki, T., Miura, K. and Mae, K., "High Porous Carbon with Cu/ZnO Nanoparticles Made by the Pyrolysis of Carbon Material as a Catalyst for Steam Reforming of Methanol and Dimethyl Ether," Carbon, 48, 1186-1195(2010). https://doi.org/10.1016/j.carbon.2009.11.042
  25. Takeguchi, T., Kani, Y., Inoue, M. and Eguchi, K., "Steam Reforming of Methanol on Copper Catalysts Supported on Large-surfacearea $ZnAl_2O_3$," Catal. Lett., 83, 49-53(2002). https://doi.org/10.1023/A:1020653414607
  26. Wang, L. C., Liu, Y. M., Chen, M., Cao, Y., He, H. Y., Wu, G. S., Dai, W. L. and Fan, K. N., "Production of Hydrogen by Steam Reforming of Methanol over Cu/ZnO Catalysts Prepared Via a Practical Soft Reactive Grinding Route Based on Dry Oxalateprecursor Synthesis," J. Catal., 246, 193-204(2007). https://doi.org/10.1016/j.jcat.2006.12.006
  27. Kam, R., Selomulya, C., Amal, R. and Scott, J., "The Influence of La-doping on the Activity and Stability of Cu/ZnO Catalyst for the Low-temperature Water-gas Shift Reaction," J. Catal., 273, 73-81(2010). https://doi.org/10.1016/j.jcat.2010.05.004
  28. Shishido, T., Yamamoto, M., Li, D., Tian, Y., Morioka, H., Honda, M., Sano, T. and Takehira, K., "Water-gas Shift Reaction over Cu/ZnO and $Cu/ZnO/Al_2O_3$ Catalysts Prepared by Homogeneous Precipitation," Appl. Catal. A: Gen., 303, 62-71(2006). https://doi.org/10.1016/j.apcata.2006.01.031

Cited by

  1. 수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구 vol.28, pp.1, 2017, https://doi.org/10.7316/khnes.2017.28.1.1
  2. Investigation of a hydrogen generator with the heat management module utilizing liquid‐gas organic phase change material vol.45, pp.7, 2011, https://doi.org/10.1002/er.6526