DOI QR코드

DOI QR Code

Feasibility of Mineral Carbonation Technology as a $CD_{2}$ Storage Measure Considering Domestic Industrial Environment

국내 산업 여건을 고려한 $CD_{2}$ 저장 방안으로서 광물 탄산화 기술의 타당성

  • Han, Kun-Woo (CO2 Project, Research Institute of industrial Science & Technology) ;
  • Rhee, Chang-Houn (CO2 Project, Research Institute of industrial Science & Technology) ;
  • Chun, Hee-Dong (CO2 Project, Research Institute of industrial Science & Technology)
  • 한건우 (포항산업과학연구원 CO2연구단) ;
  • 이창훈 (포항산업과학연구원 CO2연구단) ;
  • 전희동 (포항산업과학연구원 CO2연구단)
  • Published : 2011.04.30

Abstract

$CO_{2}$ mineral carbonation technology, fixation technology of $CO_{2}$ as carbonates, is considered to be an alternative to the $CO_{2}$ geological storage technology, which can perform small- or medium-scale $CO_{2}$ storage. We provide the current R&D status of the mineral carbonation with special emphasis on the technical and economical feasibility of $CO_{2}$ mineral carbonation taken into consideration of the domestic geological and industrial environment. Given that the domestic industry produces relatively large amount of the industrial by-products, it is expected that the technology play a pivotal role on the $CO_{2}$ reduction countermeasure, reaching the potential storage capacity to 12Mt-$CO_{2}$/yr. The economics of the overall process should be improved via the development of advanced technologies on the pretreatment of raw materials, method/solvents for metal extraction, enhanced kinetics of carbonation reactions, heat integration, and the production of highly value-added carbonates.

$CO_{2}$를 탄산염의 형태로 고정화하는 광물 탄산화 기술은 $CO_{2}$ 지중 저장의 대안 기술의 하나로 중소규모로 $CO_{2}$ 저장을 실현할 수 있는 기술로 여겨지고 있다. 이 연구에서는 광물 탄산화 기술의 전세계적인 연구 개발 동향을 파악하고, 특히 우리 나라의 지질 및 산업 여건을 고려할 때 $CO_{2}$ 광물 탄산화가 $CO_{2}$ 저감 대책이 될 수 있는지에 대한 기술적 및 경제적 타당성을 검토하였다. 그 결과 국내에서는 연간 1,200만톤 이상의 $CO_{2}$를 고정화할 수 있는 산업 부산물이 발생하고 있으며, 이를 광물탄산화에 이용한다면 $CO_{2}$ 광물탄산화는 유망한 $CO_{2}$ 저감 방안이 될 수 있을 것으로 기대된다. 이 기술의 경제성 증대를 위해서는 산업 부산물의 전처리, 금속 용출액 및 용출 방법, 고속 탄산화 기술 개발, 공정열의 이용 극대화, 생성된 탄산화물의 부가가치 향상 등의 분야에서 향후 추가적인 연구 개발이 필요할 것으로 판단된다.

Keywords

References

  1. Intergovernmental Panel on Climate Change, Carbon Dioxide Capture and Storage, IPCC Special Report(2005).
  2. Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L. and Sharp, D. H., "Carbon Dioxide Disposal in Carbonate Minerals," Energy, 20(11), 1153-1170(1995). https://doi.org/10.1016/0360-5442(95)00071-N
  3. Lackner, K. S., Butt, D. P. and Wendt, C. H., "Progress on Binding $CO_{2}$ in Mineral Substrates," Energy Convers.Mgmt., 38(Supplement 1), S259-S264(1997). https://doi.org/10.1016/S0196-8904(96)00279-8
  4. Teir, S., "Fixation of Carbon Dioxide by Producing Carbonates from Minerals and Steelmaking Slags," Department of Energy Technology, Ph.D. Dissertation, Helsinki University of Technology, Espoo(2008).
  5. Huijgen, W. J. J., "Carbon Dioxide Sequestration by Mineral Carbonation," Ph.D. Dissertation, Energy Research Centre of The Netherlands, Petten(2006).
  6. Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R., Rush, H., "Ex Situ Aqueous Mineral Carbonation," Env. Sci. Technol., 41, 2587-2593(2007). https://doi.org/10.1021/es0619253
  7. Maroto-Valer, M. M., Fauth, D. J., Kuchta, M. E., Zhang, Y. and Andresen, J. M., "Activation of Magnesium Rich Minerals as Carbonation Feedstock Materials for $CO_{2}$ Sequestration," Fuel Proc. Tech., 86(14-15), 1627-1645(2005). https://doi.org/10.1016/j.fuproc.2005.01.017
  8. Park, A.-H. A. and Fan, L.-S., "$CO_{2}$ Mineral Sequestration: Physically Activated Dissolution of Serpentine and pH Swing Process," Chem. Eng. Sci., 59(22-23), 5241-5247(2004). https://doi.org/10.1016/j.ces.2004.09.008
  9. Zevenhoven, R., Teir, S. and Eloneva, S., "Heat Optimisation of a Staged Gas-Solid Mineral Carbonation Process for Long-Term $CO_{2}$ Storage," Energy, 33(2), 362-370(2008). https://doi.org/10.1016/j.energy.2007.11.005
  10. Iizuka, A., Fujii, M., Yamasaki, A. and Yanagisawa, Y., "Development of a New $CO_{2}$ Sequestration Process Utilizing the Carbonation of Waste Cement," Ind. Eng. Chem. Res., 43, 7880-7887 (2004). https://doi.org/10.1021/ie0496176
  11. Byeon, T. B., Lee, J. Y., Kim, D. Y., Lee, H. H. and Kim, H. S., "Carbonation Treatment Technology of Steel Making Slag," RIST Journal of R&D, 19(1), 3239(2005), in Korean.
  12. Kakizawa, M., Yamasaki, A. and Yanagisawa, Y., "A New $CO_{2}$ Disposal Process via Artificial Weathering of Calcium Silicate Accelerated by Acetic Acid," Energy, 26(4), 341-354(2001). https://doi.org/10.1016/S0360-5442(01)00005-6
  13. Maroto-Valer, M. M., Zhang, Y., Kuchta, M. E., Andresen, J. M. and Fauth, D. J., Process for Sequestering Carbon Dioxide and Sulphur Dioxide: U.S.A., US Patent No.0002847(2005).
  14. Blencoe, J. G., Anovitz, L. M., Beard, J. S. and Palmer, D. A., Carbonation of Serpentine for Long-Term $CO_{2}$ Sequestration, Final Report, Oak Ridge National Laboratory, Project Number: 3210-2024(2003).
  15. Wendt, C. H., Butt, D. P., Lackner, K. S. and Ziock, H.-J., "Thermodynamic Considerations of Using Chlorides to Accelerate the Carbonate Formation from Magnesium Silicates," Greenhouse Gas Control Technologies 4, 349-354(1999).
  16. Zevenhoven, R. and Teir, S., "Long Term Storage of $CO_{2}$ as Magnesium Carbonate in Finland," Thrid Annual Conference on Carbon Capture & Sequestration, Alexandria, VA, USA(2004).
  17. Newall, P. S., Clarke, S. J., Haywood, H. M., Scholes, H., Clarke, N. R., King, P. A. and Barley, R. W., $CO_{2}$ Storage as Carbonate Minerals, International Energy Agency(2000).
  18. Park, A.-H.A., Jadhav, R. and Fan, L.-S., "$CO_{2}$ Mineral Sequestration: Chemically Enhanced Aqueous Carbonation of Serpentine," Can. J. Chem.Eng., 81, 885-890(2003).
  19. Yamasaki, A., Iizuka, A., Kakizawa, M., Katsuyama, Y., Nakagawa, M., Fujii, M., Kumagi, K. and Yanagisawa, Y., "Development of a Carbon Sequestration Process by the Carbonation Reaction of Waste Streams Containing Calcium or Magnesium," Fifth Annual Conference on Carbon Capture & Sequestration., Alexandria, Virginia, USA(2006).
  20. Katsuyama, Y., Iizuka, A., Yamasaki, A., Fujii, M., Kumagai, K. and Yanagisawa, Y., "Development of a New Process of Waste Concrete for $CO_{2}$ Reduction in Cement Industry," Greenhouse Gas Control Technologies 7, 1433-1439(2005).
  21. Katsuyama, Y., Yamasaki, A., Iizuka, A., Fujii, M., Kumagai, K. and Yanagisawa, Y., "Development of a Process for Producing High-Purity Calcium Carbonate $(CaCO_{3})$ from Waste Cememt Using Pressurized $CO_{2}$", Env. Progr., 24(2), 162-170(2005). https://doi.org/10.1002/ep.10080
  22. Research Institute of Industrial Science & Technology, "Feasibility Study on the Project of Technology Development for $(CaCO_{3})$ Storage uner the Ground," Research Report, Ministry of Environment (2009), in Korean.
  23. Oyamada, K., Watanabe, K., Okamoto, M. and Iwata, I., "Reproduction Technology of Coral Reefs Using "Marine Block," JFE Technical Report(2009).
  24. Tsutsumi, N., Tanaka, M., Tasaki, T., Amada, K., Hisasue, O., Yamamoto, T., Yamada, H. and Endoh, K., "Development of Rapid Stabilization Process for Steelmaking Slag," Nippon Steel Technical Report(2008).
  25. Stolaroff, J. K., Lowry, G. V. and Keith, D. W., "Using CaO and MgO-Rich Industrial Waste Streams for Carbon Sequestration," Energy Convers. Mgmt., 46, 687-699(2005). https://doi.org/10.1016/j.enconman.2004.05.009
  26. Richards, V., Peaslee, K. and Smith, J., Geological Sequestration of $CO_{2}$ by Hydrogen Carbonate Formation with Reclaimed Slag, AISI/DOE Technology Roadmap Program for the Steel Industry, Final Report, Missouri University of Science and Technology( 2008).
  27. Huijgen, W. J. J., Comans, R. N. J. and Witkamp, G.-J., "Cost Evaluation of $CO_{2}$ Sequestration by Aqueous Mineral Carbonation," Energy Convers. Mgmt., 48(7), 1923-1935(2007). https://doi.org/10.1016/j.enconman.2007.01.035
  28. Druckenmiller, M. L. and Maroto-Valer, M. M., "Carbon Sequestration Using Brine of Adjusted pH to Form Mineral Carbonates," Fuel Proc. Technol., 86(14-15), 1599-1614(2005). https://doi.org/10.1016/j.fuproc.2005.01.007
  29. Seifritz, W., "$CO_{2}$ Disposal by Means of Silicates," Nature, 345, 486(1990).
  30. Kojima, T., Nagamine, A., Ueno, N. and Uemiya, S., "Absorption and Fixation of Carbon Dioxide by Rock Weathering," Energy Convers. Mgmt., 38(Supplement 1), S461-S466(1997). https://doi.org/10.1016/S0196-8904(96)00311-1
  31. Schuiling, R. D. and Krijgsman, P., "Enhanced Weathering: An Effective and Cheap Tool to Sequester $CO_{2}$," Climate Change, 74, 349-354(2006). https://doi.org/10.1007/s10584-005-3485-y
  32. Pohang University of Science & Technology, Study on the Conversion of $CO_{2}$ into Calcium Carbonate Using E. Coli, Research Institute of Industrial Science & Technology, Research Report (2010), in Korean.
  33. Bond, G. M., Stringer, J., Brandvold, D. K., Simsek, F. A., Medina, M.-G. and Egeland, G., "Development of Integrated System for Biomimetic $CO_{2}$ Sequestration Using the Enzyme Carbonic Anhydrase," Energy & Fuels, 15, 309-316(2001). https://doi.org/10.1021/ef000246p
  34. Favre, N., Christ, M. L. and Pierre, A. C., "Biocatalytic Capture of $CO_{2}$ with Carbonic Anhydrase and Its Transformation to Solid Carbonate," J. Mol. Cat. B: Enzymatic, 60(3-4), 163-170(2009). https://doi.org/10.1016/j.molcatb.2009.04.018
  35. Trachtenberg, M. C., Cowan, R. M., Smith, D. A., Horazak, D. A., Jensen, M. D., Laumb, J. D., Vucelic, A. P., Chen, H., Wang, L. and Wu, X., "Membrane-Based, Enzyme-Facilitated, Efficient Carbon Dioxide Capture," Energy Procedia, 1(1), 353-360(2009). https://doi.org/10.1016/j.egypro.2009.01.048
  36. Jeong, S. K., Lim, K. S., Kim, D. H., Lee, S. W. and Lee, S. H., "Biomimetic $CO_{2}$ Capture and Sequestration", KIC News, 12(6), 29-36(2009).
  37. Zevenhoven, R., Eloneva, S. and Teir, S., "Chemical Fixation of $CO_{2}$ in Carbonates: Routes to Valuable Products and Long-Term Storage," Cat. Today, 115(1-4), 73-79(2006). https://doi.org/10.1016/j.cattod.2006.02.020
  38. Roskill Information Sevices, Inc., The Economics of Ground Calcium Carbonate, 3rd Ed., Report [cited 2010 Jun. 28]; Available from: http://www.roskill.com/.
  39. Goff, F., Guthrie, G., Lipin, B., Fite, M., Chipera, S., Counce, D., Kluk, E. and Ziock, H., Evaluation of Ultramafic Deposits in the Eastern United States and Puerto Rico as Sources of Magnesium for Carbon Dioxide Sequestration, Los Alamos National Laboratory( 2000).
  40. O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., Walters, R. P. and Turner, P. C., "Carbon Dioxide Sequestration by Direct Mineral Carbonation with Carbonic Acid," 25th International Technical Conference on Coal Utilization & Fuel Systems, Clear Water, FL, USA(2000).
  41. O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., Rush, G. E., Walters, R. P. and Turner, P. C., "$CO_{2}$ Storage in Solid Form: A Study of Direct Mineral Carbonation," Proceedings of the 5th International Conference on Greenhouse Gas Technologies, Cairns, Australia(2000).
  42. Fauth, D. J. and Soong, Y., "Mineral Sequestration Utilizing Industrial by-Products, Residues, and Minerals," Mineral Sequestration Workshop, National Energy Technology Laboratory(2001).
  43. Reddy, K. J., Argyle, M. D., Viswatej, A. and Taylor, D. T., "A Novel Method to Capture and Store Flue Gas Carbon Dioxide $(CO_{2})$: Accelerated Mineral Carbonation," IOP Conf. Ser.: Earth Environ. Sci., 6(2009).
  44. Lackner, K. S., Duby, P., Yegulalp, T., Krevor, S. and Graves, C., Integrating Steel Production with Mineral Carbon Sequestration, AISI/DOE Technology Roadmap Program for the Steel Industry, Final Report, Columbia University(2008).
  45. Eloneva, S., Teir, S., Salminen, J., Revitzer, K., Kontu, K., Forsman, A.-M., Zevenhoven, R. and Fogelholm, C.-J., "Pure Calcium Carbonate Product from the Carbonation of a Steelmaking Slag," 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering, Rome, Italy(2008).
  46. Hamelinck, C. N., Faaij, A. P. C., Turkenburg, W. C., van Bergen, F., Pagnier, H. J. M., Barzandji, O. H. M., Wolf, K.-H. A. A. and Ruijg, G. J., "$(CO_{2})$ Enhanced Coalbed Methane Production in the Netherlands," Energy, 27(7), 647-674(2002). https://doi.org/10.1016/S0360-5442(02)00012-9
  47. Comans, R. N. J., Personal Communication(e-mail), (2009).
  48. Research Institute of Innovative Technology for the Earth, Programmatic Approach to the Technology Development of Carbon Dioxide Fixation and Utilization, Research Report (2009), in Japanese.
  49. Yogo, K., Teng, Y., Yashima, T., Yamada, K., Rubin, E.S., Keith, D.W., Gilboy, C.F., Wilson, M., Morris, T., Gale, J. and Thambimuthu, K., "Development of a New $(CO_{2})$ Fixation/Utilization Process (1): Recovery of Calcium Form Steelmaking Slag and Chemical Fixation of Carbon Dioxide by Carbonation Reaction," Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, 2427-2430(2005).
  50. Iizuka, A., "Development of a New Total Recycling Process of Waste Concrete with a Carbonic Acid Treatment," Ph.D. Dissertation, University of Tokyo, Tokyo(2006).
  51. Iizuka, A., Yanagisawa, Y. and Yamasaki, A., "Development of a New Recycling Process for Concrete Sludge Generated from Concrete Pole Plant," AIChE, Nashville, TN, USA(2009).
  52. Wright, J., Australian CCS Commercial and R&D Projects, CCS Workshop Tokyo 2007, Tokyo, Japan(2007).
  53. L.E.K. Consulting, An Ideal Portfolio of CCS Projects and Rationale for Supporting Projects, Global CCS Institute(2009).
  54. Korea Institute of Geoscience and Mineral Resources, Planning Study on the Base Building for the Mineral Carbonation Technology, Research Report JP2008-026 (2008), in Korean.
  55. "Building An Ocean Forest Using Steel Slag", DK Ilbo(http: // www.dkilbo.com), 2010. 2.10 (2010), in Korean.
  56. Teir, S., Eloneva, S., Fogelholm, C.-J. and Zevenhoven, R., "Dissolution of Steelmaking Slags in Acetic Acid for Precipitated Calcium Carbonate Production," Energy, 32(4), 528-539(2007). https://doi.org/10.1016/j.energy.2006.06.023
  57. Teir, S., Eloneva, S. and Zevenhoven, R., "Production of Precipitated Calcium Carbonate from Calcium Silicates and Carbon Dioxide," Energy Convers. Mgmt., 46(18-19), 2954-2979(2005). https://doi.org/10.1016/j.enconman.2005.02.009
  58. Goldberg, P., Romanosky, R., Chen, Z.-Y., "$(CO_{2})$ Mineral Sequestration Studies in US," 5th International Conference on Greenhouse Gas Technologies, Cairns Convention Center, Australia(2000).
  59. Goldberg, P., "$(CO_{2})$ Mineral Sequestration Studies - Introduction, Issues and Plans," Workshop on $(CO_{2})$ Sequestration with Minerals(2001).
  60. Takagi, M., "Cost Evaluation of CCS Technology and Deployment Scenarios in Japan," CCS Workshop 2007, Kyoto, Japan(2007).
  61. Kang, S.-G., Development of Technology for $(CO_{2})$ Marine Geological Storage (V), Ministry of Land, Transport, and Maritime Affairs, Annual Evaluation Meeting(2009), in Korean.

Cited by

  1. Leaching Property of Coal Fly Ash Using Water as the Solvent and Its Carbonation Performance vol.36, pp.3, 2014, https://doi.org/10.4491/KSEE.2014.36.3.198
  2. Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash vol.19, pp.1, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.1.18
  3. 전산유체역학을 이용한 이산화탄소 광물 탄산화 반응기 분석: 용액 내 고체 반응물 교반 향상을 위한 내부 구조 설계 vol.54, pp.5, 2011, https://doi.org/10.9713/kcer.2016.54.5.612
  4. 제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향 vol.55, pp.2, 2011, https://doi.org/10.9713/kcer.2017.55.2.141
  5. 전남 화순군 백아산 아천동굴(석회동굴) 동굴생성물을 이용한 생광물화작용 연구 vol.31, pp.2, 2011, https://doi.org/10.9727/jmsk.2018.31.2.113