DOI QR코드

DOI QR Code

CO2 flux in a cool-temperate deciduous forest (Quercus mongolica) of Mt. Nam in Seoul, Korea

  • Joo, Seung-Jin (Center for Atmospheric and Environmental Modeling, Seoul National University) ;
  • Park, Moon-Soo (Center for Atmospheric and Environmental Modeling, Seoul National University) ;
  • Kim, Gyung-Soon (Department of Biology, Graduate School of Seoul Women's University) ;
  • Lee, Chang-Seok (Faculty of Environment and Life Sciences, Seoul Women's University)
  • Received : 2010.12.24
  • Accepted : 2011.01.03
  • Published : 2011.03.01

Abstract

The Namsan Ecological Tower Site based on a flux tower was equipped with eddy covariance and automatic opening/closing chamber systems to collect long-term continuous measurements of $CO_2$ flux, such as the net ecosystem exchange (NEE) and soil $CO_2$ efflux in a cool-temperate Quercus mongolica forest. The mean concentrations of atmospheric $CO_2$ ($705\;mg/m^3$) during the summer were smaller than those measured ($770\;mg/m^3$) during the winter. The mean $CO_2$ flux during the summer period was negative ($-0.34\;mg\;m^{-2}\;s^{-1}$), while that during the winter period was positive ($0.14\;mg\;m^{-2}\;s^{-1}$). $CO_2$ was deposited from the atmosphere to the surface in the summer. The daily mean value of soil $CO_2$ efflux increased from spring to summer. The seasonal pattern in the rate of soil $CO_2$ efflux tightly followed the seasonal pattern in soil temperatures. The $Q_{10}$ values for soil $CO_2$ efflux varied in a range from 2.12 to 3.26, and increased with increasing soil depth. The maximum value of total carbon uptake (i.e., NEE) during the growing season was $-8\;g\;CO_2m^{-2}\;day^{-1}$. At the same time, the rate of soil $CO_2$ efflux was $6.9\;g\;CO_2m^{-2}\;day^{-1}$. The amplitude of flux variations in NEE was approximately 14% larger than those in soil $CO_2$ efflux. These results suggest that in cool-temperate regions of the Korean peninsula, the forest ecosystem of Q. mongolica may have a larger atmospheric $CO_2$ uptake, due primarily to its high photosynthetic capacity and low ecosystem respiration.

Keywords

References

  1. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2001. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82: 2415-2434. https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
  2. Baldocchi DD, Valentini V, Running S, Oechel W, Dahlman R. 1996. Strategies for measuring and modeling $CO_2$ and water vapor fluxes over terrestrial ecosystems. Global Change Biol 2: 159-168. https://doi.org/10.1111/j.1365-2486.1996.tb00069.x
  3. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G. 2007. Contributions to accelerating atmospheric $CO_2$ growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104: 18866-18870. https://doi.org/10.1073/pnas.0702737104
  4. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187. https://doi.org/10.1038/35041539
  5. Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB. 2002. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113: 3-19. https://doi.org/10.1016/S0168-1923(02)00099-0
  6. Denning AS, Fung IY, Randall D. 1995. Latitudinal gradient of atmospheric $CO_2$ due to seasonal exchange with land biota. Nature 376: 240-243. https://doi.org/10.1038/376240a0
  7. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guomundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw UKT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Velentini R, Wilson K, Wofsy S. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113: 53-74. https://doi.org/10.1016/S0168-1923(02)00102-8
  8. FAO-UNESCO. 1998. FAO-UNESCO, Revised Legend of FAO-UNESCO Soil Map of the World. International Soil Reference and Information Centre, Wageningen.
  9. Feigenwinter C, Bernhofer C, Eichelmann U, Heinesch B, Hertel M, Janous D, Kolle O, Lagergren F, Lindroth A, Minerbi S, Moderow U, Molder M, Montagnani L, Queck R, Rebmann C, Vestin P, Yernaux M, Zeri M, Ziegler W, Aubinet M. 2008. Comparison of horizontal and vertical advective $CO_2$ fluxes at three forest sites. Agric For Meteorol 148: 12-24. https://doi.org/10.1016/j.agrformet.2007.08.013
  10. Fuehrer PL, Friehe CA. 2002. Flux corrections revisited. Bound Layer Meteorol 102: 415-457. https://doi.org/10.1023/A:1013826900579
  11. Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC. 1996. Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271: 1576-1578. https://doi.org/10.1126/science.271.5255.1576
  12. Gower ST. 2003. Patterns and mechanisms of the forest carbon cycle. Ann Rev Environ Resour 28: 169-204. https://doi.org/10.1146/annurev.energy.28.050302.105515
  13. Haszpra L, Barcza Z, David KJ, Tarczay K. 2005. Long-term tall tower carbon dioxide flux monitoring over an area of mixed vegetation. Agric For Meteorol 132: 58-77. https://doi.org/10.1016/j.agrformet.2005.07.002
  14. Hiura T. 2005. Estimation of above-ground biomass and net biomass increment in a cool temperate forest on a landscape scale. Ecol Res 20: 271-277. https://doi.org/10.1007/s11284-005-0042-0
  15. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  16. IGBP Terrestrial Carbon Working Group. 1998. The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280: 1393-1394. https://doi.org/10.1126/science.280.5368.1393
  17. Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrofo MF, Peressotti A. 2009. Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil $CO_2$ efflux. Global Change Biol 15: 1289-1301. https://doi.org/10.1111/j.1365-2486.2008.01793.x
  18. Jia S, Akiyama T, Mo W, Inatomi M, Koizumi H. 2003. Temporal and spatial variability of soil respiration in a cool temperate broad-leaved forest. 1. Measurement of spatial variance and factor analysis. Jpn J Ecol 53: 13-22. (in Japanese with English summary)
  19. Kim W, Cho J, Myong G, Mano M, Komori D, Kim SD. 2008. Quality assessment of data from the Daegwallyeong Flux Measurement Station (DFMS) based on short-term experiments. J Agric Meteorol 64: 111-120. https://doi.org/10.2480/agrmet.64.3.3
  20. Kominami Y, Jomura M, Dannoura M, Goto Y, Tamai K, Miyama T, Kanazawa Y, Kaneko S, Okumura M, Misawa N, Hamada S, Sasaki T, Kimura H, Ohtani Y. 2008. Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan. Agric For Meteorol 148: 723-737. https://doi.org/10.1016/j.agrformet.2008.01.017
  21. Kowalski AS, Serrano-Ortiz P, Janssens IA, Sanchez-Moral S, Cuezva S, Domingo F, Were A, Alados-Arboledas L. 2008. Can flux tower research neglect geochemical $CO_2$ exchange? Agric For Meteorol 148: 1045-1054. https://doi.org/10.1016/j.agrformet.2008.02.004
  22. Kwak YS, Kim JH. 1992. Secular changes of density, litterfall, phytomass and primary productivity in Mongolian oak (Quercus mongolica) forest. Korean J Ecol 15: 19-33.
  23. Larcher W. 1995. Physiological Plant Ecology. Spriner-Verlag, Berlin, pp 155-156.
  24. Law BE, Thornton PE, Irvine J, Anthoni PM, van Tuyl S. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biol 7: 755-777. https://doi.org/10.1046/j.1354-1013.2001.00439.x
  25. Lee CS, Cho HJ, Mun JS, Kim JE, Lee JS. 1998. Ecological Diagnosis on Mt. Nam in Seoul, Korea. Korean J Ecol 21: 713-721.
  26. Lee CS, Cho YC, Shin HC, Lee CH, Lee SM, Seol ES, Oh WS, Park SA. 2006. Ecological characteristics of Korean red pine (Pinus densiflora S. et Z.) forest on Mt. Nam as a long term ecological research (LTER) site. J Ecol Field Boil 29: 593-602. https://doi.org/10.5141/JEFB.2006.29.6.593
  27. Liang NS, Nakadai T, Hirano T, Qu LY, Koike T, Fujinuma Y, Inoue G. 2004. In situ comparison of four approaches to estimating soil $CO_2$ efflux in a northern larch (Larix kaempferi Sarg.) forest. Agric For Meteorol 123: 97-117. https://doi.org/10.1016/j.agrformet.2003.10.002
  28. Mizoguchi Y, Miyata A, Ohtani Y, Hirata R, Yuta S. 2009. A review of tower flux observation sites in Asia. J For Res 14: 1-9. https://doi.org/10.1007/s10310-008-0101-9
  29. Mo W, Lee MS, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H. 2005. Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol 134: 81-94. https://doi.org/10.1016/j.agrformet.2005.08.015
  30. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK. 2001. A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci U S A 98: 14784-14789. https://doi.org/10.1073/pnas.261555198
  31. Park MS, Park SU. 2006. Effects of topographical slope angle and atmospheric stratification on the surface-layer turbulence. Boundary-Layer Meteorol 118: 613-633. https://doi.org/10.1007/s10546-005-7206-x
  32. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quere C, Scholes RJ, Wallace DWR. 2001. The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, eds). Cambridge University Press, Cambridge, pp 183-238.
  33. Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S, Nakai Y, Takagi K, Tani M, Wang H. 2008. Temporal and spatial variations in the seasonal patterns of $CO_2$ flux in boreal, temperate, and tropical forests in East Asia. Agric For Meteorol 148: 700-713. https://doi.org/10.1016/j.agrformet.2007.12.006
  34. Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N. 2002. Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agric For Meteorol 112: 203-215. https://doi.org/10.1016/S0168-1923(02)00082-5
  35. Shibata H, Hiura T, Tanaka Y, Takagi K, Koike T. 2005. Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan. Ecol Res 20: 325-331. https://doi.org/10.1007/s11284-005-0048-7
  36. Shibata H, Kirikae M, Tanaka Y, Sakuma T, Hatano R. 1998. Proton budgets of forest ecosystems on volcanogenous regosols in Hokkaido, northern Japan. Water Air Soil Pollut 105: 63-72. https://doi.org/10.1023/A:1005086400473
  37. Son Y, Jun YC, Lee YY, Kim RH, Yang SY. 2004. Soil carbon dioxide evolution, litter decomposition, and nitrogen availability four years after thinning in a Japanese larch plantation. Commun Soil Sci Plant Anal 35: 1111-1122. https://doi.org/10.1081/CSS-120030593
  38. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404: 861-865. https://doi.org/10.1038/35009084
  39. Webb EK, Pearman GI, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapor transfer. Q J R Meteorol Soc 106: 85-100. https://doi.org/10.1002/qj.49710644707
  40. Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA. 1993. Net exchange of $CO_2$ in a mid-latitude forest. Science 260: 1314-1317. https://doi.org/10.1126/science.260.5112.1314

Cited by

  1. Reduction of photosynthesis before midday depression occurred: leaf photosynthesis of Fagus crenata in a temperate forest in relation to canopy position and a number of days after rainfall vol.26, pp.5, 2011, https://doi.org/10.1007/s11284-011-0859-7
  2. Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest vol.34, pp.4, 2011, https://doi.org/10.5141/JEFB.2011.043
  3. Evaluation of sensitivity of soil respiration to temperature in different forest types and developmental stages of maturity using the incubation method vol.35, pp.1, 2012, https://doi.org/10.5141/JEFB.2012.001
  4. Effects of an urban park and residential area on the atmospheric CO2 concentration and flux in Seoul, Korea vol.30, pp.2, 2013, https://doi.org/10.1007/s00376-012-2079-7
  5. A simple estimate of the carbon budget for burned and unburned Pinus densiflora forests at Samcheok-si, South Korea vol.38, pp.3, 2015, https://doi.org/10.5141/ecoenv.2015.029