DOI QR코드

DOI QR Code

Flocculation Characteristics of Microalgae Using Chemical Flocculants

화학응집제를 이용한 미세조류의 응집 특성

  • Kwon, Do-Yeon (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Jung, Chang-Kyou (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Park, Kwang-Beom (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Choul-Gyun (Department of Biological Engineering, Inha University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 권도연 (서강대학교 화공생명공학과) ;
  • 정창규 (서강대학교 화공생명공학과) ;
  • 박광범 (서강대학교 화공생명공학과) ;
  • 이철균 (인하대학교 생명공학과) ;
  • 이진원 (서강대학교 화공생명공학과)
  • Received : 2011.02.17
  • Accepted : 2011.04.11
  • Published : 2011.04.30

Abstract

The aim of the study was to optimize harvesting method for concentrating microalgae from microalgae mass culture. It is well known that the mass density of microalgae is usually very low and these are small size (5-20 ${\mu}m$) in the culture medium. It is essential that microalgae is harvested and concentrated economically for economical biodiesel production from microalgae. In this study, to determine optimized conditions for microalgae harvesting by chemical flocculation. Flocculation of three algae, Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta, was performed using various chemical flocculants, such as inorganic flocculants (aluminium sulfate, aluminium potassium sulfate, ferrous sulfate, ferric sulfate, ferric chloride, calcium hydroxide, sodium carbonate, sodium nitrite, and sodium aluminate), organic flocculant (polyacrylamide), and biopolymer flocculants (chitosan and starch). The results indicated that aluminium based inorganic flocculants is suitable for microalgae harvesting such as Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta. The results also recommended that flocculant doses, agitation speed, agitation time, sedimentation time for economical microalgae harvesting method using chemical flocculants.

Keywords

References

  1. Brennan, L. and P. Owende (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ. Rev. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  2. Sharif Hossain, A. B. M. and A. Salleh (2008) Biodiesel Fuel Production from Algae as Renewable Energy. Am. J. Biochem. Biotech. 4: 250-254. https://doi.org/10.3844/ajbbsp.2008.250.254
  3. Szklo, A. and R. Schaeffer (2006) Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition. Energ. 31: 2513-2522. https://doi.org/10.1016/j.energy.2005.11.001
  4. Junginger, M., T. Bolkesjo, D. Bradley, P. Dolzan, A. Faaij, J. Heinimo, B. Hektor, O. Leistad, E. Ling, M. Perry, E. Piacente, Frank, R. C., Y. Ryckmans, P. P. Schouwenberg, B. Solberg, E. Tromborg, A. da S. Walter, and M. de Wit (2008) Developments in international bioenergy trade. Biomass Bioenerg. 32: 717-729. https://doi.org/10.1016/j.biombioe.2008.01.019
  5. Harun, R., M. Davidson, M. Doyle, R. Gopiraj, M. Danquah, and G. Forde (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenerg. 35: 741-747. https://doi.org/10.1016/j.biombioe.2010.10.007
  6. Li, Y., M. Horsman, N. Wu, Christopher Q. Lan, and Nathalie D. C. (2008) Biofuels from Microalgae. Biotechnol. Prog. 24: 815-820.
  7. Grima, E. M., E. H. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20: 491-515. https://doi.org/10.1016/S0734-9750(02)00050-2
  8. Canakci, M. and H. Sanli (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J. Ind. Microbiol. Biotechnol. 35: 431-441. https://doi.org/10.1007/s10295-008-0337-6
  9. Raja, R., S. Hemaiswarya, N. A. Kumar, S. Sridhar, and R. Rengasamy (2008) A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34: 77-88. https://doi.org/10.1080/10408410802086783
  10. Dismukes, C. G., D. Carrieri, N. Bennette, G. M. Ananyev, and M. C. Posewitz (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19: 235-240. https://doi.org/10.1016/j.copbio.2008.05.007
  11. Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J. Renew. Sustain. Energ. 2: 012701. https://doi.org/10.1063/1.3294480
  12. Somasundaran, P. and T. Hubbard (2006) Encyclopedia of surface and colloid science. 2nd ed., pp. 2588-2591. CRC Press, Taylor & Francis Group, NY, USA.
  13. Divakaran, R. and V. N. Sivasankara Pillai (2002) Flocculation of algae using chitosan. J. Appl. Phycol. 14: 479-422.
  14. Vandamme, D., I. Foubert, B. Meesschaert, and K. Muylaert (2010) Floccualtion of microalgae using cationic starch. J. Appl. Phycol. 22: 525-530. https://doi.org/10.1007/s10811-009-9488-8
  15. Oh, H. M., S. J. Lee, M. H. Park, H. S. Kim, H. C. Kim, J. H. Yoon, G. S. Kwon, and B. D. Yoon (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 23: 1229-1234. https://doi.org/10.1023/A:1010577319771
  16. Golueke, C. G. and W. J. Oswald (1965) Harvesting and Processing Sewage-Grown Planktonic Algae. J. Water Pollut. Contr. 37: 471-498.
  17. Lubian, L. M. (1989) Concentrating cultured marine microalgae with chitosan. Aquacul. Engineer. 8: 257-265. https://doi.org/10.1016/0144-8609(89)90013-7
  18. Morales, J., J. de la Noue, and G. Picard (1985) Harvesting marine microalgae species by chitosan flocculation. Aquacul. Engineer. 4: 257-270. https://doi.org/10.1016/0144-8609(85)90018-4
  19. Gualtieri, P., L. Barsanti, and V. Passarelli (1988) Chitosan as flocculant for concentrating Euglena gracilis cultures. Ann. Inst. Pasteur. Microbiol. 139: 717-726. https://doi.org/10.1016/0769-2609(88)90076-2
  20. Lertsutthiwong, P., S. Sutti, and S. Powtongsook (2009) Optimization of chitosan flocculation for phytoplankton removal in shrimp culture ponds. Aquacul. Engineer. 41: 188-193. https://doi.org/10.1016/j.aquaeng.2009.07.006

Cited by

  1. Optimization of cross flow filtration system for Dunaliella tertiolecta and Tetraselmis sp. microalgae harvest vol.32, pp.7, 2015, https://doi.org/10.1007/s11814-014-0343-5
  2. Optimization of Microalgae Harvesting Using Flocculation and Dissolved Air Floatation vol.27, pp.2, 2012, https://doi.org/10.7841/ksbbj.2012.27.2.103
  3. Optimization of Spirogyra Flocculation Using Polyaluminium Chloride vol.29, pp.3, 2014, https://doi.org/10.7841/ksbbj.2014.29.3.220
  4. Evaluating the harvesting efficiency of inorganic coagulants on native microalgal consortium enriched with human urine vol.82, pp.6, 2020, https://doi.org/10.2166/wst.2020.143