DOI QR코드

DOI QR Code

Polycystic kidney disease and therapeutic approaches

  • Park, Eun-Young (Department of Biological Science, Sookmyung Women's University) ;
  • Woo, Yu-Mi (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Jong-Hoon (Department of Biological Science, Sookmyung Women's University)
  • Received : 2011.06.09
  • Published : 2011.06.30

Abstract

Polycystic kidney disease (PKD) is a common genetic disorder in which extensive epithelial-lined cysts develop in the kidneys. In previous studies, abnormalities of polycystin protein and its interacting proteins, as well as primary cilia, have been suggested to play critical roles in the development of renal cysts. However, although several therapeutic targets for PKD have been suggested, no early diagnosis or effective treatments are currently available. Current developments are active for treatment of PKD including inhibitors or antagonists of PPAR-${\gamma}$, TNF-${\alpha}$, CDK and VEGF. These drugs are potential therapeutic targets in PKD, and need to be determined about pathological functions in human PKD. It has recently been reported that the alteration of epigenetic regulation, as well as gene mutations, may affect the pathogenesis of PKD. In this review, we will discuss recent approaches to PKD therapy. It provides important information regarding potential targets for PKD.

Keywords

References

  1. Igarashi, P. and Somlo, S. (2002) Genetics and pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 13, 2384-2398. https://doi.org/10.1097/01.ASN.0000028643.17901.42
  2. Torres, V. E. and Harris, P. C. (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149-168. https://doi.org/10.1038/ki.2009.128
  3. Watnick, T. and Germino, G. (2003) From cilia to cyst. Nat. Genet. 34, 355-356. https://doi.org/10.1038/ng0803-355
  4. Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A. E., Lu, W., Brown, E. M., Quinn, S. J., Ingber, D. E. and Zhou, J. (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129-137. https://doi.org/10.1038/ng1076
  5. Belibi, F. A. and Edelstein, C. L. (2010) Novel targets for the treatment of autosomal dominant polycystic kidney disease. Expert. Opin. Investig. Drugs 19, 315-328. https://doi.org/10.1517/13543781003588491
  6. Shillingford, J. M., Murcia, N. S., Larson, C. H., Low, S. H., Hedgepeth, R., Brown, N., Flask, C. A., Novick, A. C., Goldfarb, D. A., Kramer-Zucker, A., Walz, G., Piontek, K. B., Germino, G. G. and Weimbs, T. (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 103, 5466-5471. https://doi.org/10.1073/pnas.0509694103
  7. Gao, X., Zhang, Y., Arrazola, P., Hino, O., Kobayashi, T., Yeung, R. S., Ru, B. and Pan, D. (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol. 4, 699-704. https://doi.org/10.1038/ncb847
  8. Distefano, G., Boca, M., Rowe, I., Wodarczyk, C., Ma, L., Piontek, K. B., Germino, G. G., Pandolfi, P. P. and Boletta, A. (2009) Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell Biol. 29, 2359-2371. https://doi.org/10.1128/MCB.01259-08
  9. Zafar, I., Belibi, F. A., He, Z. and Edelstein, C. L. (2009) Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD). Nephrol. Dial Transplant 24, 2349-2353. https://doi.org/10.1093/ndt/gfp129
  10. Yamaguchi, T., Hempson, S. J., Reif, G. A., Hedge, A. M. and Wallace, D. P. (2006) Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol. 17, 178-187. https://doi.org/10.1681/ASN.2006080912
  11. Yamaguchi, T., Reif, G. A., Calvet, J. P. and Wallace, D. P. (2010) Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am. J. Physiol. Renal. Physiol. 299, F944-951. https://doi.org/10.1152/ajprenal.00387.2010
  12. Sas, K. M. (2010) Targeting B-Raf as a treatment strategy for polycystic kidney disease. Am. J Physiol. Renal. Physiol. 299, F942-943. https://doi.org/10.1152/ajprenal.00485.2010
  13. Takiar, V., Nishio, S., Seo-Mayer, P., King, J. D., Jr., Li, H., Zhang, L., Karihaloo, A., Hallows, K. R., Somlo, S. and Caplan, M. J. (2011) Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl. Acad. Sci. U. S. A. 108, 2462-2467. https://doi.org/10.1073/pnas.1011498108
  14. Harris, P. C. and Torres, V. E. (2009) Polycystic kidney disease. Annu. Rev. Med. 60, 321-337. https://doi.org/10.1146/annurev.med.60.101707.125712
  15. Taby, R. and Issa, J. P. (2010) Cancer epigenetics. CA. Cancer J. Clin. 60, 376-392. https://doi.org/10.3322/caac.20085
  16. Felsenfeld, G. and Groudine, M. (2003) Controlling the double helix. Nature 421, 448-453. https://doi.org/10.1038/nature01411
  17. Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41-45. https://doi.org/10.1038/47412
  18. Tsankova, N., Renthal, W., Kumar, A. and Nestler, E. J. (2007) Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8, 355-367. https://doi.org/10.1038/nrn2132
  19. Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Muller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E. and Ruvkun, G. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89. https://doi.org/10.1038/35040556
  20. Filipowicz, W., Bhattacharyya, S. N. and Sonenberg, N. (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102-114.
  21. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787-798. https://doi.org/10.1016/S0092-8674(03)01018-3
  22. Friedman, R. C., Farh, K. K., Burge, C. B. and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105.
  23. Calin, G. A. and Croce, C. M. (2006) MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857-866. https://doi.org/10.1038/nrc1997
  24. Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., Prueitt, R. L., Yanaihara, N., Lanza, G., Scarpa, A., Vecchione, A., Negrini, M., Harris, C. C. and Croce, C. M. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103, 2257-2261. https://doi.org/10.1073/pnas.0510565103
  25. Kato, M., Arce, L. and Natarajan, R. (2009) MicroRNAs and their role in progressive kidney diseases. Clin. J. Am. Soc. Nephrol. 4, 1255-1266. https://doi.org/10.2215/CJN.00520109
  26. Saal, S. and Harvey, S. J. (2009) MicroRNAs and the kidney: coming of age. Curr. Opin. Nephrol. Hypertens 18, 317-323. https://doi.org/10.1097/MNH.0b013e32832c9da2
  27. Li, X. (2010) Epigenetics and autosomal dominant polycystic kidney disease. Biochim. Biophys. Acta. [Epub ahead of print].
  28. Vasyutina, E. and Treier, M. (2010) Molecular mechanisms in renal degenerative disease. Semin. Cell Dev. Biol. 21, 831-837. https://doi.org/10.1016/j.semcdb.2010.08.010
  29. Karolina, D. S., Wintour, E. M., Bertram, J. and Jeyaseelan, K. (2010) Riboregulators in kidney development and function. Biochimie. 92, 217-225. https://doi.org/10.1016/j.biochi.2009.12.008
  30. Kliewer, S. A., Lehmann, J. M., Milburn, M. V. and Willson, T. M. (1999) The PPARs and PXRs: nuclear xenobiotic receptors that define novel hormone signaling pathways. Recent Prog. Horm. Res. 54, 345-367; discussion 367-348.
  31. Liu, Y., Dai, B., Fu, L., Jia, J. and Mei, C. (2010) Rosiglitazone inhibits cell proliferation by inducing G1 cell cycle arrest and apoptosis in ADPKD cyst-lining epithelia cells. Basic Clin. Pharmacol. Toxicol. 106, 523-530. https://doi.org/10.1111/j.1742-7843.2010.00539.x
  32. Muto, S., Aiba, A., Saito, Y., Nakao, K., Nakamura, K., Tomita, K., Kitamura, T., Kurabayashi, M., Nagai, R., Higashihara, E., Harris, P. C., Katsuki, M. and Horie, S. (2002) Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1 mutant. Hum. Mol. Genet. 11, 1731-1742. https://doi.org/10.1093/hmg/11.15.1731
  33. Dai, B., Liu, Y., Mei, C., Fu, L., Xiong, X., Zhang, Y., Shen, X. and Hua, Z. (2010) Rosiglitazone attenuates development of polycystic kidney disease and prolongs survival in Han:SPRD rats. Clin. Sci. (Lond) 119, 323-333. https://doi.org/10.1042/CS20100113
  34. Raphael, K. L., Strait, K. A., Stricklett, P. K., Baird, B. C., Piontek, K., Germino, G. G. and Kohan, D. E. (2009) Effect of pioglitazone on survival and renal function in a mouse model of polycystic kidney disease. Am. J. Nephrol. 30, 468-473. https://doi.org/10.1159/000242432
  35. Xu, N., Glockner, J. F., Rossetti, S., Babovich-Vuksanovic, D., Harris, P. C. and Torres, V. E. (2006) Autosomal dominant polycystic kidney disease coexisting with cystic fibrosis. J. Nephrol. 19, 529-534.
  36. Guan, Y. and Breyer, M. D. (2001) Peroxisome proliferator- activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int. 60, 14-30. https://doi.org/10.1046/j.1523-1755.2001.00766.x
  37. Liu, M., Fu, L., Liu, C., Xiong, X., Gao, X., Xiao, M., Cai, H., Hu, H., Wang, X. and Mei, C. (2010) DH9, a novel PPARgamma agonist suppresses the proliferation of ADPKD epithelial cells: An association with an inhibition of beta-catenin signaling. Invest. New Drugs 28, 783-790. https://doi.org/10.1007/s10637-009-9313-x
  38. Balkwill, F. (2009) Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361-371. https://doi.org/10.1038/nrc2628
  39. Gardner, K. D., Jr., Burnside, J. S., Elzinga, L. W. and Locksley, R. M. (1991) Cytokines in fluids from polycystic kidneys. Kidney Int. 39, 718-724. https://doi.org/10.1038/ki.1991.87
  40. Merta, M., Tesar, V., Zima, T., Jirsa, M., Rysava, R. and Zabka, J. (1997) Cytokine profile in autosomal dominant polycystic kidney disease. Biochem. Mol. Biol. Int. 41, 619-624.
  41. Li, X., Magenheimer, B. S., Xia, S., Johnson, T., Wallace, D. P., Calvet, J. P. and Li, R. (2008) A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 14, 863-868. https://doi.org/10.1038/nm1783
  42. Pirson, Y. (2008) Does TNF-alpha enhance cystogenesis in ADPKD? Nephrol. Dial Transplant. 23, 3773-3775. https://doi.org/10.1093/ndt/gfn533
  43. Bukanov, N. O., Smith, L. A., Klinger, K. W., Ledbetter, S. R. and Ibraghimov-Beskrovnaya, O. (2006) Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444, 949-952. https://doi.org/10.1038/nature05348
  44. McClue, S. J., Blake, D., Clarke, R., Cowan, A., Cummings, L., Fischer, P. M., MacKenzie, M., Melville, J., Stewart, K., Wang, S., Zhelev, N., Zheleva, D. and Lane, D. P. (2002) In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int. J. Cancer 102, 463-468. https://doi.org/10.1002/ijc.10738
  45. Park, J. Y., Park, S. H. and Weiss, R. H. (2009) Disparate effects of roscovitine on renal tubular epithelial cell apoptosis and senescence: implications for autosomal dominant polycystic kidney disease. Am. J. Nephrol. 29, 509-515. https://doi.org/10.1159/000184590
  46. Ibraghimov-Beskrovnaya, O. (2007) Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy. Cell Cycle 6, 776-779. https://doi.org/10.4161/cc.6.7.4047
  47. Moreno, S., Ibraghimov-Beskrovnaya, O. and Bukanov, N. O. (2008) Serum and urinary biomarker signatures for rapid preclinical in vivo assessment of CDK inhibition as a therapeutic approach for PKD. Cell Cycle 7, 1856-1864. https://doi.org/10.4161/cc.7.12.6055
  48. Bello-Reuss, E., Holubec, K. and Rajaraman, S. (2001) Angiogenesis in autosomal-dominant polycystic kidney disease. Kidney Int. 60, 37-45. https://doi.org/10.1046/j.1523-1755.2001.00768.x
  49. Klagsbrun, M. and Moses, M. A. (1999) Molecular angiogenesis. Chem. Biol. 6, R217-224. https://doi.org/10.1016/S1074-5521(99)80081-7
  50. Tao, Y., Kim, J., Yin, Y., Zafar, I., Falk, S., He, Z., Faubel, S., Schrier, R. W. and Edelstein, C. L. (2007) VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int. 72, 1358-1366. https://doi.org/10.1038/sj.ki.5002550
  51. Amura, C. R., Brodsky, K. S., Groff, R., Gattone, V. H., Voelkel, N. F. and Doctor, R. B. (2007) VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am. J. Physiol. Cell Physiol. 293, C419-428. https://doi.org/10.1152/ajpcell.00038.2007
  52. McGrath-Morrow, S., Cho, C., Molls, R., Burne-Taney, M., Haas, M., Hicklin, D. J., Tuder, R. and Rabb, H. (2006) VEGF receptor 2 blockade leads to renal cyst formation in mice. Kidney Int. 69, 1741-1748. https://doi.org/10.1038/sj.ki.5000314
  53. Bernhardt, W. M., Wiesener, M. S., Weidemann, A., Schmitt, R., Weichert, W., Lechler, P., Campean, V., Ong, A. C., Willam, C., Gretz, N. and Eckardt, K. U. (2007) Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830-842. https://doi.org/10.2353/ajpath.2007.060455
  54. Gao, J., Zhou, H., Lei, T., Zhou, L., Li, W., Li, X. and Yang, B. (2011) Curcumin inhibits renal cyst formation and enlargement in vitro by regulating intracellular signaling pathways. Eur. J. Pharmacol. 654, 92-99. https://doi.org/10.1016/j.ejphar.2010.12.008
  55. Leonhard, W. N., van der Wal, A., Novalic, Z., Kunnen, S. J., Gansevoort, R. T., Breuning, M. H., de Heer, E. and Peters, D. J. (2011) Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a Pkd1-deletion model. Am. J. Physiol. Renal Physiol. 300, F1193-1202. https://doi.org/10.1152/ajprenal.00419.2010
  56. Leuenroth, S. J., Okuhara, D., Shotwell, J. D., Markowitz, G. S., Yu, Z., Somlo, S. and Crews, C. M. (2007) Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 104, 4389-4394. https://doi.org/10.1073/pnas.0700499104
  57. Natoli, T. A., Smith, L. A., Rogers, K. A., Wang, B., Komarnitsky, S., Budman, Y., Belenky, A., Bukanov, N. O., Dackowski, W. R., Husson, H., Russo, R. J., Shayman, J. A., Ledbetter, S. R., Leonard, J. P. and Ibraghimov- Beskrovnaya, O. (2010) Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat. Med. 16, 788-792. https://doi.org/10.1038/nm.2171
  58. Chatterjee, S., Shi, W. Y., Wilson, P. and Mazumdar, A. (1996) Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease. J. Lipid Res. 37, 1334-1344.
  59. Yoo, C. B. and Jones, P. A. (2006) Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37-50. https://doi.org/10.1038/nrd1930
  60. Mutskov, V. and Felsenfeld, G. (2004) Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 23, 138-149. https://doi.org/10.1038/sj.emboj.7600013
  61. Taplick, J., Kurtev, V., Kroboth, K., Posch, M., Lechner, T. and Seiser, C. (2001) Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J. Mol. Biol. 308, 27-38. https://doi.org/10.1006/jmbi.2001.4569
  62. Taunton, J., Hassig, C. A. and Schreiber, S. L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408-411. https://doi.org/10.1126/science.272.5260.408
  63. Bertos, N. R., Wang, A. H. and Yang, X. J. (2001) Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol. 79, 243-252. https://doi.org/10.1139/o01-032
  64. Deribe, Y. L., Wild, P., Chandrashaker, A., Curak, J., Schmidt, M. H., Kalaidzidis, Y., Milutinovic, N., Kratchmarova, I., Buerkle, L., Fetchko, M. J., Schmidt, P., Kittanakom, S., Brown, K. R., Jurisica, I., Blagoev, B., Zerial, M., Stagljar, I. and Dikic, I. (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal 2, ra84. https://doi.org/10.1126/scisignal.2000576
  65. Valenzuela-Fernandez, A., Cabrero, J. R., Serrador, J. M. and Sanchez-Madrid, F. (2008) HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 18, 291-297. https://doi.org/10.1016/j.tcb.2008.04.003
  66. Bali, P., Pranpat, M., Bradner, J., Balasis, M., Fiskus, W., Guo, F., Rocha, K., Kumaraswamy, S., Boyapalle, S., Atadja, P., Seto, E. and Bhalla, K. (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280, 26729-26734. https://doi.org/10.1074/jbc.C500186200
  67. Van Bodegom, D., Saifudeen, Z., Dipp, S., Puri, S., Magenheimer, B. S., Calvet, J. P. and El-Dahr, S. S. (2006) The polycystic kidney disease-1 gene is a target for p53-mediated transcriptional repression. J. Biol. Chem. 281, 31234-31244. https://doi.org/10.1074/jbc.M606510200
  68. Cao, Y., Semanchik, N., Lee, S. H., Somlo, S., Barbano, P. E., Coifman, R. and Sun, Z. (2009) Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc. Natl. Acad. Sci. U. S. A. 106, 21819-21824. https://doi.org/10.1073/pnas.0911987106
  69. van Bodegom, D., Roessingh, W., Pridjian, A. and El Dahr, S. S. (2010) Mechanisms of p53-mediated repression of the human polycystic kidney disease-1 promoter. Biochim. Biophys. Acta. 1799, 502-509. https://doi.org/10.1016/j.bbagrm.2010.04.001
  70. Nishio, S., Hatano, M., Nagata, M., Horie, S., Koike, T., Tokuhisa, T. and Mochizuki, T. (2005) Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J. Clin. Invest. 115, 910-918. https://doi.org/10.1172/JCI22850
  71. McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40-47. https://doi.org/10.1016/S0968-0004(01)02031-X
  72. Xia, S., Li, X., Johnson, T., Seidel, C., Wallace, D. P. and Li, R. (2010) Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts. Development 137, 1075-1084. https://doi.org/10.1242/dev.049437
  73. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. and Golemis, E. A. (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351-1363. https://doi.org/10.1016/j.cell.2007.04.035
  74. Song, X., Di Giovanni, V., He, N., Wang, K., Ingram, A., Rosenblum, N. D. and Pei, Y. (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum. Mol. Genet. 18, 2328-2343. https://doi.org/10.1093/hmg/ddp165
  75. Bieliauskas, A. V. and Pflum, M. K. (2008) Isoform-selective histone deacetylase inhibitors. Chem. Soc. Rev. 37, 1402-1413. https://doi.org/10.1039/b703830p
  76. Mehnert, J. M. and Kelly, W. K. (2007) Histone deacetylase inhibitors: biology and mechanism of action. Cancer J. 13, 23-29. https://doi.org/10.1097/PPO.0b013e31803c72ba
  77. Qian, F., Watnick, T. J., Onuchic, L. F. and Germino, G. G. (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87, 979-987. https://doi.org/10.1016/S0092-8674(00)81793-6
  78. Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., Dreyfuss, G., Eddy, S. R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G. and Tuschl, T. (2003) A uniform system for microRNA annotation. RNA 9, 277-279. https://doi.org/10.1261/rna.2183803
  79. Kim, V. N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376-385. https://doi.org/10.1038/nrm1644
  80. Gregory, R. I., Chendrimada, T. P., Cooch, N. and Shiekhattar, R. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631-640. https://doi.org/10.1016/j.cell.2005.10.022
  81. Tijsterman, M. and Plasterk, R. H. (2004) Dicers at RISC; the mechanism of RNAi. Cell 117, 1-3. https://doi.org/10.1016/S0092-8674(04)00293-4
  82. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. and Bradley, A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902-1910. https://doi.org/10.1101/gr.2722704
  83. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M. J., Tuschl, T. and Margalit, H. (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697-2706. https://doi.org/10.1093/nar/gki567
  84. Liang, M., Liu, Y., Mladinov, D., Cowley, A. W., Jr., Trivedi, H., Fang, Y., Xu, X., Ding, X. and Tian, Z. (2009) MicroRNA: a new frontier in kidney and blood pressure research. Am. J. Physiol. Renal Physiol. 297, F553-558. https://doi.org/10.1152/ajprenal.00045.2009
  85. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M. and Tuschl, T. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414. https://doi.org/10.1016/j.cell.2007.04.040
  86. Sun, Y., Koo, S., White, N., Peralta, E., Esau, C., Dean, N. M. and Perera, R. J. (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188. https://doi.org/10.1093/nar/gnh186
  87. Akkina, S. and Becker, B. N. (2011) MicroRNAs in kidney function and disease. Transl. Res. 157, 236-240.
  88. Razzaque, M. S., Naito, T. and Taguchi, T. (2001) Protooncogene Ets-1 and the kidney. Nephron. 89, 1-4. https://doi.org/10.1159/000046034
  89. Lee, S. O., Masyuk, T., Splinter, P., Banales, J. M., Masyuk, A., Stroope, A. and Larusso, N. (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J. Clin. Invest. 118, 3714-3724. https://doi.org/10.1172/JCI34922
  90. Pandey, P., Qin, S., Ho, J., Zhou, J. and Kreidberg, J. A. (2011) Systems biology approach to identify transcriptome reprogramming and microRNA targets during the progression of Polycystic Kidney Disease. BMC. Syst. Biol. 5, 56. https://doi.org/10.1186/1752-0509-5-56
  91. Tan, Y. C., Blumenfeld, J. and Rennert, H. (2011) Autosomal dominant polycystic kidney disease: Genetics, mutations and microRNAs. Biochim. Biophys. Acta. [Epub ahead of print].
  92. Sun, H., Li, Q. W., Lv, X. Y., Ai, J. Z., Yang, Q. T., Duan, J. J., Bian, G. H., Xiao, Y., Wang, Y. D., Zhang, Z., Liu, Y. H., Tan, R. Z., Yang, Y., Wei, Y. Q. and Zhou, Q. (2010) MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol. Biol. Rep. 37, 2951-2958. https://doi.org/10.1007/s11033-009-9861-3
  93. Tran, U., Zakin, L., Schweickert, A., Agrawal, R., Doger, R., Blum, M., De Robertis, E. M. and Wessely, O. (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137, 1107-1116. https://doi.org/10.1242/dev.046045
  94. Chung, A. C., Huang, X. R., Meng, X. and Lan, H. Y. (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317-1325. https://doi.org/10.1681/ASN.2010020134
  95. Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J. and Natarajan, R. (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. U. S. A. 104, 3432-3437. https://doi.org/10.1073/pnas.0611192104
  96. Krupa, A., Jenkins, R., Luo, D. D., Lewis, A., Phillips, A. and Fraser, D. (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21, 438-447. https://doi.org/10.1681/ASN.2009050530
  97. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., Khew-Goodall, Y. and Goodall, G. J. (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593-601. https://doi.org/10.1038/ncb1722
  98. Korpal, M., Lee, E. S., Hu, G. and Kang, Y. (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910-14914. https://doi.org/10.1074/jbc.C800074200
  99. Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F. and Goodall, G. J. (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846-7854. https://doi.org/10.1158/0008-5472.CAN-08-1942
  100. Takahashi, M., Takamori, H., Kasuya, M., Ogawa, Y., Sato, K., Kimura, K., Homma, Y., Hirata, Y. and Fujita, T. (2010) miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One 5, e13614. https://doi.org/10.1371/journal.pone.0013614
  101. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, T., Horvitz, H. R. and Golub, T. R. (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834-838. https://doi.org/10.1038/nature03702
  102. Bhatt, K., Mi, Q. S. and Dong, Z. (2011) microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am. J. Physiol. Renal Physiol. 300, F602-610. https://doi.org/10.1152/ajprenal.00727.2010
  103. Masyuk, A. I., Huang, B. Q., Ward, C. J., Gradilone, S. A., Banales, J. M., Masyuk, T. V., Radtke, B., Splinter, P. L. and LaRusso, N. F. (2010) Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G990-999. https://doi.org/10.1152/ajpgi.00093.2010
  104. Masyuk, T., Masyuk, A. and LaRusso, N. (2009) MicroRNAs in cholangiociliopathies. Cell Cycle 8, 1324-1328. https://doi.org/10.4161/cc.8.9.8253
  105. Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M. and Stoffel, M. (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685-689. https://doi.org/10.1038/nature04303
  106. Esau, C. C. and Monia, B. P. (2007) Therapeutic potential for microRNAs. Adv. Drug Deliv. Rev. 59, 101-114. https://doi.org/10.1016/j.addr.2007.03.007

Cited by

  1. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development vol.133, pp.3, 2014, https://doi.org/10.1007/s00439-013-1378-0
  2. Current insights into renal ciliopathies: what can genetics teach us? vol.28, pp.6, 2013, https://doi.org/10.1007/s00467-012-2259-9
  3. MicroRNAs in Cholangiopathies vol.2, pp.3, 2014, https://doi.org/10.1007/s40139-014-0048-9
  4. HDAC inhibitors in kidney development and disease vol.28, pp.10, 2013, https://doi.org/10.1007/s00467-012-2320-8
  5. Blockade of interleukin-8 receptor signalling inhibits cyst developmentin vitro, via suppression of cell proliferation in autosomal polycystic kidney disease vol.19, pp.8, 2014, https://doi.org/10.1111/nep.12261
  6. Mouse models of polycystic kidney disease induced by defects of ciliary proteins vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.022
  7. microRNA biomarkers in cystic diseases vol.46, pp.7, 2013, https://doi.org/10.5483/BMBRep.2013.46.7.151
  8. N-myc downstream-regulated gene 1 is involved in the regulation of cystogenesis in transgenic mice overexpressing human PKD2 gene vol.13, pp.1, 2013, https://doi.org/10.1002/pmic.201200248
  9. Inactivation of Max-interacting Protein 1 Induces Renal Cilia Disassembly through Reduction in Levels of Intraflagellar Transport 20 in Polycystic Kidney vol.288, pp.9, 2013, https://doi.org/10.1074/jbc.M112.413302
  10. Ginkgolide B inhibits renal cyst development in in vitro and in vivo cyst models vol.302, pp.10, 2012, https://doi.org/10.1152/ajprenal.00356.2011
  11. Novel role of ouabain as a cystogenic factor in autosomal dominant polycystic kidney disease vol.305, pp.6, 2013, https://doi.org/10.1152/ajprenal.00248.2013
  12. parenteral injection in a polycystic kidney disease mouse model vol.9, pp.1, 2018, https://doi.org/10.1039/C7FO01253E