DOI QR코드

DOI QR Code

Numerical Simulation of Supercritical $CO_2$ Flow in a Geological Storage Reservoir of Ocean

해양 지중저장층내 초임계 $CO_2$ 유동에 대한 전산모사

  • Choi, Hang-Seok (Environmental and Energy Systems Research Division, Korea Institute of Machinery and Materials)
  • 최항석 (한국기계연구원 그린환경기계연구본부)
  • Received : 2011.03.30
  • Accepted : 2011.04.25
  • Published : 2011.04.29

Abstract

In the present study, a 3-dimensional (3D) numerical model was developed to mimic the micro porous structure of a geological $CO_2$ storage reservoir. Especially, 3D modeling technique assigning random pore size to a 3D micro porous structure was devised. Numerical method using CFD (computational fluid dynamics) was applied for the 3D micro porous structure to calculate supercritical $CO_2$ flow field. The three different configurations of 3D micro porous model were designed and their flow fields were calculated. For the physical conditions of $CO_2$ flow, temperature and pressure were set up equivalent to geological underground condition where $CO_2$ fluid was stored. From the results, the characteristics of the supercritical $CO_2$ flow fields were scrutinized and the influence of the micro pore configuration on the flow field was investigated. In particular, the pressure difference and consequent $CO_2$ permeability were calculated and compared with increasing $CO_2$ flow rate.

이산화탄소의 해양 지중저장에 대한 전산모사를 위해 실제 이산화탄소가 저장되는 해양 지중 저장층에 대한 3차원 전산모형을 개발하였다. 특히, 실제 저장층의 3차원 구조를 모사하기 위하여 공극의 크기를 불규칙(random)적으로 부여하는 수치적 방법을 고안하여 3차원 전산모형을 구성하였고, 이를 균일한 공극 구조의 경우와 비교하였다. 이렇게 구성된 3차원 공극모형 내의 초임계 이산화탄소 유동을 시뮬레이션하기 위하여 전산유체역학을 사용하였다. 이러한 초임계 이산화탄소의 시뮬레이션에는 실제 저장층의 환경 즉 온도 및 압력을 동일하게 모델링하여 적용하였다. 공극 구조가 $CO_2$의 유동에 미치는 영향을 살펴보기 위해, 세 가지 형태의 3차원 전산모형의 공극 구조 내부를 흐르는 초임계 이산화탄소 유동에 대한 수치해석을 수행하였으며, 특히 3차원 전산모형의 내부유동에 대한 압력강하 및 투수율을 계산하여 본 모형이 해양 지중저장의 전산모사에 적합한지를 판단하고, 이산화탄소 유량 증가에 따른 초임계 이산화탄소 유동의 특성을 살펴보았다.

Keywords

References

  1. Gaspar Ravagnani, A. T. F. S., Ligero, E. L. and Suslick, S. B., "$CO_2$ sequestration through enhanced oil recovery in a mature oil field," J. Petroleum Sci. Eng., 65, 129-138 (2009). https://doi.org/10.1016/j.petrol.2008.12.015
  2. Bachu, S., "Sequestration of $CO_2$ in geological media in response to climate change: road map for site selection using the transform of the geological space into the $CO_2$ phase space," Energy Conversion and Management, 43, 87-102(2002). https://doi.org/10.1016/S0196-8904(01)00009-7
  3. Borchiellini, R., Massardo, A. F. and Santarelli. M., "Carbon tax vs. $CO_2$ sequestration effects on environomic analysis of existing power plant," Energy Conversion and Management, 43, 1425-1443(2002). https://doi.org/10.1016/S0196-8904(02)00026-2
  4. Keith, D. and Lavoie, R., "An overview of Wabamun area $CO_2$ sequestration project (WASP)," Energy Procedia, 1, 2817- 2824(2009). https://doi.org/10.1016/j.egypro.2009.02.054
  5. Helmig, R., Class, H., Huber, R., Sheta, H., Ewing, J., Hinkelmann, R., Jakobs, H. and Bastian, P., "Architecture of the modular program system MUFTE-UG for simulating multiphase flow and transport processes in heterogeneous porous media," Mathematische Geologie(1998).
  6. Kang, Q., Tsimpanogiannis, I. N., Zhang, D. and Lichtner, P. C., "Numerical modeling of pore-scale phenomena during $CO_2$ sequestration in oceanic sediments," Fuel Proc. Technol., 86, 1647-1665(2005). https://doi.org/10.1016/j.fuproc.2005.02.001
  7. Suekane, T., Soukawa, S., Iwatani, S., Tsushima, S. and Hirai, S., "Behavior of supercritical $CO_2$ injected into porous media containing water," Energy, 30, 2370-2382(2005). https://doi.org/10.1016/j.energy.2003.10.026
  8. STAR-CCM+ user guide version 4.02, 2009, CD-adapco, New York.
  9. Mazaheri, A. R., Zerai, B., Ahmadi, G., Kadambi, J. R., Saylor, B. Z., Oliver, M., Bromhal, G. S. and Smith, D. H., "Computer simulation of flow through a lattice flow-cell model," Adv. Water Resour., 28, 1267-1279(2005). https://doi.org/10.1016/j.advwatres.2004.10.016
  10. Choi, H. S., Choi, Y. S., Park, H. C., Cheol, H., Kang, S. G., Cho, M. I. and Kim, Y. H., "The characteristics of $CO_2$ flow and thermal fields in a porous media," Proc. IHTC14, 1-6(2010).
  11. Adler, P. M., Jacquin, C. G. and Quiblier, J. A., "Flow in simulated porous media," Int. J. Multiphase Flow, 16, 691-712(1990). https://doi.org/10.1016/0301-9322(90)90025-E
  12. Bloomfield, J. P. and Williams, A. T., "An empirical liquid permeability-gas permeability correlation for use in aquifer properties studies," Quarterly J. Eng. Geol., 28, S1431-S150(1995).