DOI QR코드

DOI QR Code

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1)

흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(1)-흡착등온식을 이용한 평가

  • Na, Choon-Ki (Department of Environmental Engineering, Mokpo National University) ;
  • Han, Moo-Young (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Park, Hyun-Ju (Department of Civil and Environmental Engineering, Seoul National University)
  • 나춘기 (목포대학교 환경공학과) ;
  • 한무영 (서울대학교 건설환경공학부) ;
  • 박현주 (서울대학교 건설환경공학부)
  • Received : 2011.08.07
  • Accepted : 2011.08.29
  • Published : 2011.08.31

Abstract

The objectives of this study were to evaluate the applicability of adsorption models for adsorption properties of adsorbents. For this study, adsorption experiment of $NO_3^-$ ion using anion exchange resin has been investigated under adsorption equilibrium and kinetic in bach process. Adsorption equilibrium experiment were carried out that two conditions is change of adsorbate concentration and change of adsorbent weight. Experiment results have been analyzed by adsorption isotherm models, energy models and kinetic models. Under the condition of change of adsorbate concentration was best described by Sips and Redlich-Perterson isotherm models. However case of change of adsorbent weight was described by Langmuir isotherm models. It seems reasonable to assume that isotherm model was dominated by multiple mechanism according to experiment condition.

본 연구는 흡착제의 흡착특성을 이해하는데 이용되는 각종 흡착모델의 적용성을 평가하는데 목적이 있다. 이를 위해 상용의 음이온교환수지(PA-308)를 이용하여 $NO_3^-$에 대한 흡착특성을 회분식 실험을 통해 조사하였다. 흡착등온과 흡착속도 실험결과는 일반적으로 널리 이용되고 있는 다양한 흡착등온식과 반응속도식을 통해 모델화하였다. 흡착평형실험은 흡착등온식을 적용하는데 있어 실험조건이 미치는 영향을 확인하기 위해 흡착제의 투여량을 일정한 값으로 고정하고 흡착질의 농도변화에 따른 조건과 흡착질의 농도를 일정한 값으로 고정하고 흡착제의 투여량 변화에 따른 조건으로 나누어 수행하였다. 흡착질의 농도를 변화시키는 조건에서의 흡착평형은 Langmuir와 Freundlich 흡착등온식을 결합한 형태의 Sips 흡착등온식과 Redlich-Perterson 흡착등온식에 의해 수식화가 가능하였다. 한편, 흡착제의 무게를 변화시키는 조건에서의 흡착평형은 단층 흡착, 균일표면을 가정하는 Langmuir 흡착등온식과 잘 일치하는 경향을 보였다. 이상의 결과는 $NO_3^-$에 대한 음이온교환수지의 흡착 메커니즘이 흡착실험 조건에 의해 달라질 수 있음을 시사한다.

Keywords

References

  1. Popat, K. M., Anand, P. S. and Dasare, B. D., "Selective removal of fluoride ions from water by the aluminum form of the aminomethylphosphonic acid-type ion exchanger," React. Polym., 23, 23-32(1994). https://doi.org/10.1016/0923-1137(94)90107-4
  2. 이상섭, 주현종, 이석찬, 장만, 이택견, 심호재, 신용배, "광합성 박테리아를 이용한 폐수의 고도처리시스템개발," Kor. J. Microbiol. Biotechnol., 30(2), 189-197(2002).
  3. 남영우, 김남경, 신호철, 윤영자, "천연제올라이트에 의한 상하수의 암모니아성 질소 제거에 관한 연구(I)-양이온 교환특성 및 재생방법-," 한국폐기물학회지, 14(7), 784-791 (1997).
  4. 연익준, 주소영, 신택수, 정영도, 김광렬, "비산회로부터 합성한 제올라이트에 의한 암모늄 이온 제거시 공존 양이온의 영향," 한국폐기물학회지, 17(3), 337-348(2000).
  5. Langmuir, I., "The adsorption of gases on plane surface of glass, mica and platinum," J. Am. Chem. Soc., 40, 1361- 1403(1918). https://doi.org/10.1021/ja02242a004
  6. Freundlich, H. M. F., "Over the adsorption in solution," J. Phys. Chem., 57, 385-470(1906).
  7. Elovich, S. Y. and Larinov, O. G., "Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions," Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk, 2, 209-216(1962).
  8. Sips, R., "On the structure of a catalyst surface," J. Chem. Phys., 16(5), 490-495.(1948). https://doi.org/10.1063/1.1746922
  9. Dubinin, M. M., Zaverina, E. D. and Radushkevich, L. V., "Sorption and structure of active carbons. I. Adsorption of organic vapors," Zh. Fiz. Khim., 21, 1351-1362(1947).
  10. Temkin, M. I., "Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules," Zh. Fiz. Chim., 15, 296-332(1941).
  11. Hahn, Y. B., Hahn, K. J. and Im, S. J., "A Mathematical Model for Adsorption of silver on Activated carbon," J. Kor. Inst. Met. & Mater., 44(1), 870-879(2006).
  12. 옥삼복, 정용준, 정승원, 강운석, "입상활성탄에 의한 Cu, Zn, Cd 이온의 흡착 특성," 한국환경과학회지, 11(4), 333-338(2002).
  13. Rengaraj, S., Kim, Y. H., Joo, C. K., Choi, K. H. and Yi, J. H., "Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins," 1200H and IRN97H. Korean J. Chem. Eng., 21(1), 187-194(2004). https://doi.org/10.1007/BF02705397
  14. Hamdaoui, O., "Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick," J. Hazard. Mater, B., 135, 264-273(2006). https://doi.org/10.1016/j.jhazmat.2005.11.062
  15. 김병호, "탄소계 흡착제와 제올라이트에서 흡착평형 특성 연구," 박사학위논문, 경상대학교(2006).
  16. Giles, C. H., MacEwan, T. H., Nakhwa, S. N. and Smith, D., "Studies in adsorption. Part Xl. A system of classification of solution adsorption isotherms and its use in diagmosis of adsorption mechanisms and in measurements of specific surface areas of solids," J. Chem. Soc., 10, 3973-3993 (1960).
  17. Stumm, W. and Morgan, J. J., "Aquatic Chemistry, 2nd ed., Wiley interscience," John Wiley & Sons(1981).
  18. Weber, J. J., "Adsorption in Physicochemical Processes for Water Quality Control, Wiley Interscience," NY, In Metcalf, R. L. and Pitts, J. N. (Eds.), 199-259(1972).
  19. 전영신, "망간단괴와 그 침출잔사의 폐수 중 카드뮴 이온흡착 거동," 석사학위논문, 이화여대 대학원(1999).
  20. Treybal, R. E., "Mass-Transfer Operations," 3rd ed. Mc- Graw Hill(1981).
  21. Weber, J. and Miller, C. T., "Organic chemical movement over and through soil," In Sawhney, B. L., Brown, K.(ed). Reactions and movement of organic chemical, Soil Sci., Am. Madison. WI., 305-334(1989).
  22. Hamdaoui, O. and Naffrechoux, E., "Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters," J. Hazard. Mater., 147, 381-394(2007). https://doi.org/10.1016/j.jhazmat.2007.01.021
  23. Redlich, O., Peterson, D. L., "A useful adsorption isotherm," J. Phys. Chem., 63, 1024(1959). https://doi.org/10.1021/j150576a611
  24. 강수정, "Glutamic acid와 Itaconic acid로 graft 공중합한 chitosan의 beads를 이용한 수계 Uranium의 흡착제거에 관 한 연구," 박사학위논문, 성균관대 대학원(2004).
  25. Halsey, G. D., "The role of surface heterogeneity," Adv. Catal., 4, 259-269(1952).

Cited by

  1. Sorptive Removal of Radionuclides (Cobalt, Strontium and Cesium) using AMP/IO-PAN Composites vol.11, pp.4, 2013, https://doi.org/10.7733/jnfcwt-k.2013.11.4.259
  2. Adsorption Characteristics of Heavy Metals using Sesame Waste Biochar vol.46, pp.1, 2013, https://doi.org/10.7745/KJSSF.2013.46.1.008
  3. Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.169
  4. Stabilization of mixed heavy metals in contaminated marine sediment using steel slag vol.38, pp.3, 2014, https://doi.org/10.5394/KINPR.2014.38.3.269
  5. Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis vol.34, pp.1, 2015, https://doi.org/10.5338/KJEA.2015.34.1.10
  6. Comparison of Steel Slag and Activated Carbon for Phosphate Removal from Aqueous Solution by Adsorption vol.39, pp.5, 2017, https://doi.org/10.4491/KSEE.2017.39.5.303
  7. Adsorption Characteristics of Zinc Ion in Synthetic Wastewater by Carbonaceous Material Prepared from Oriental Cherry vol.35, pp.3, 2018, https://doi.org/10.9786/kswm.2018.35.3.236